Research Feeds

View All
Maternal Iron Deficiency Anemia Affects Postpartum Emotions and Cognition Evidence for the Use of Complementary and Alternative Medicine for Pelvic Inflammatory Disease: A Literature Review Pelvic inflammatory disease: a family practice perspective Microbiology profile in women with pelvic inflammatory disease in relation to IUD use Epidermiological markers in pelvic inflammatory disease (PID) among the women of reproductive age group Bacterial isolates associated with pelvic inflammatory disease among female patients attending some hospitals in abuja, Nigeria The Key Element Role of Metallophores in the Pathogenicity and Virulence of Staphylococcus aureus: A Review The relationship between serum calprotectin levels and disease activity in patients with subacute thyroiditis. 919 Syrup Alleviates Postpartum Depression by Modulating the Structure and Metabolism of Gut Microbes and Affecting the Function of the Hippocampal GABA/Glutamate System Gut microbiota: Linking nutrition and perinatal depression The role of gut microbiota and blood metabolites in postpartum depression: A Mendelian randomization analysis. Association between dietary trace minerals and pelvic inflammatory disease: Data from the 2015–2018 National Health and Nutrition Examination Surveys Association between dietary magnesium intake and pelvic inflammatory disease in US women: a cross-sectional study of NHANES Integrated Metabolomics and Network Pharmacology Study on the Mechanism of Kangfuxiaoyan Suppository for Treating Chronic Pelvic Inflammatory Disease Treatment of postpartum depression: Clinical, psychological and pharmacological options

Antimicrobial activity of bovine lactoferrin against Gardnerella species clinical isolates Original paper

Researched by:

  • Divine Aleru ID
    Divine Aleru

    User avatarI am a biochemist with a deep curiosity for the human microbiome and how it shapes human health, and I enjoy making microbiome science more accessible through research and writing. With 2 years experience in microbiome research, I have curated microbiome studies, analyzed microbial signatures, and now focus on interventions as a Microbiome Signatures and Interventions Research Coordinator.

April 3, 2025

  • Bacterial Vaginosis
    Bacterial Vaginosis

    Bacterial vaginosis (BV) is caused by an imbalance in the vaginal microbiota, where the typically dominant Lactobacillus species are significantly reduced, leading to an overgrowth of anaerobic and facultative bacteria.

Researched by:

  • Divine Aleru ID
    Divine Aleru

    User avatarI am a biochemist with a deep curiosity for the human microbiome and how it shapes human health, and I enjoy making microbiome science more accessible through research and writing. With 2 years experience in microbiome research, I have curated microbiome studies, analyzed microbial signatures, and now focus on interventions as a Microbiome Signatures and Interventions Research Coordinator.

Last Updated: 2025

Microbiome Signatures identifies and validates condition-specific microbiome shifts and interventions to accelerate clinical translation. Our multidisciplinary team supports clinicians, researchers, and innovators in turning microbiome science into actionable medicine.

Divine Aleru

I am a biochemist with a deep curiosity for the human microbiome and how it shapes human health, and I enjoy making microbiome science more accessible through research and writing. With 2 years experience in microbiome research, I have curated microbiome studies, analyzed microbial signatures, and now focus on interventions as a Microbiome Signatures and Interventions Research Coordinator.

What was studied?

The study investigated the antimicrobial activity of bovine lactoferrin (MTbLF) against clinical isolates of Gardnerella vaginalis (G. vaginalis), which is a key pathogen in the development of bacterial vaginosis (BV). The study also examined the potential synergistic effects of bovine lactoferrin when combined with commonly used antibiotics, metronidazole and clindamycin. It utilized a range of in vitro experiments to determine the dose-dependent effects of MTbLF and its ability to inhibit the growth of both metronidazole-resistant and susceptible G. vaginalis isolates.

Who was studied?

The study focused on 71 clinical isolates of Gardnerella vaginalis that were presumptively identified from vaginal samples collected from women diagnosed with bacterial vaginosis. The researchers subjected these isolates to antimicrobial susceptibility testing to evaluate their resistance profiles against metronidazole and clindamycin.

What were the most important findings?

The study found that MTbLF exhibited significant antimicrobial activity against G. vaginalis isolates, including those resistant to metronidazole. The inhibitory effect was dose-dependent and not strain-dependent, suggesting that MTbLF could effectively target G. vaginalis, regardless of the strain. Combining MTbLF with clindamycin enhanced the antibiotic’s efficacy against G. vaginalis, producing a synergistic effect. This finding highlights the potential of MTbLF as an adjunctive treatment for BV, particularly in cases involving antibiotic-resistant strains. Additionally, the study confirmed that G. vaginalis strains were unable to utilize bovine lactoferrin as an iron source, contrasting with their ability to acquire iron from human lactoferrin, which may contribute to the pathogen’s resilience in the vaginal environment.

What are the implications of this study?

The study highlights the potential of MTbLF as an adjunct or alternative treatment for BV, especially in cases where traditional antibiotics like metronidazole and clindamycin are ineffective due to resistance. Given its iron-binding properties, MTbLF could help disrupt the growth of G. vaginalis by depriving it of essential iron, thereby hindering its ability to proliferate. The observed synergy between MTbLF and clindamycin could pave the way for more effective combination therapies. Furthermore, MTbLF’s ability to inhibit G. vaginalis, even in biofilm-forming states, highlights its potential in managing BV, a condition known for its recurring nature and complexity. These findings warrant further exploration, particularly in clinical settings, to assess the safety and pharmacokinetics of MTbLF in treating and preventing BV recurrence.

Lactoferrin

Lactoferrin (LF) is a naturally occurring iron-binding glycoprotein classified as a postbiotic with immunomodulatory, antimicrobial, and prebiotic-like properties.

Bacterial Vaginosis

Bacterial vaginosis (BV) is caused by an imbalance in the vaginal microbiota, where the typically dominant Lactobacillus species are significantly reduced, leading to an overgrowth of anaerobic and facultative bacteria.

Join the Roundtable

Contribute to published consensus reports, connect with top clinicians and researchers, and receive exclusive invitations to roundtable conferences.