Research Feeds

View All
Maternal Iron Deficiency Anemia Affects Postpartum Emotions and Cognition Pelvic inflammatory disease: a family practice perspective Microbiology profile in women with pelvic inflammatory disease in relation to IUD use Epidermiological markers in pelvic inflammatory disease (PID) among the women of reproductive age group Bacterial isolates associated with pelvic inflammatory disease among female patients attending some hospitals in abuja, Nigeria The Key Element Role of Metallophores in the Pathogenicity and Virulence of Staphylococcus aureus: A Review The relationship between serum calprotectin levels and disease activity in patients with subacute thyroiditis. 919 Syrup Alleviates Postpartum Depression by Modulating the Structure and Metabolism of Gut Microbes and Affecting the Function of the Hippocampal GABA/Glutamate System Gut microbiota: Linking nutrition and perinatal depression The role of gut microbiota and blood metabolites in postpartum depression: A Mendelian randomization analysis. Association between dietary magnesium intake and pelvic inflammatory disease in US women: a cross-sectional study of NHANES Integrated Metabolomics and Network Pharmacology Study on the Mechanism of Kangfuxiaoyan Suppository for Treating Chronic Pelvic Inflammatory Disease Treatment of postpartum depression: Clinical, psychological and pharmacological options A Metabolomics Study of the Volatile Oil from Prunella vulgaris L. On Pelvic Inflammatory Disease Effect of Lactobacillus rhamnosus HN001 in Pregnancy on Postpartum Symptoms of Depression and Anxiety: A Randomised Double-blind Placebo-controlled Trial

Copper in microbial pathogenesis: meddling with the metal

March 18, 2025

  • Microbes
    Microbes

    Microbes, short for microorganisms, are tiny living organisms that are ubiquitous in the environment, including on and inside the human body. They play a crucial role in human health and disease, functioning within complex ecosystems in various parts of the body, such as the skin, mouth, gut, and respiratory tract. The human microbiome, which is […]

Last Updated: 2024

Microbiome Signatures identifies and validates condition-specific microbiome shifts and interventions to accelerate clinical translation. Our multidisciplinary team supports clinicians, researchers, and innovators in turning microbiome science into actionable medicine.

Karen Pendergrass

Karen Pendergrass is a microbiome researcher specializing in microbiome-targeted interventions (MBTIs). She systematically analyzes scientific literature to identify microbial patterns, develop hypotheses, and validate interventions. As the founder of the Microbiome Signatures Database, she bridges microbiome research with clinical practice. In 2012, based on her own investigative research, she became the first documented case of FMT for Celiac Disease—four years before the first published case study.

What was studied?

The study investigated the role of copper in microbial pathogenesis. Specifically, it examined how copper serves as both a necessary nutrient for microbial organisms and a microbial weapon used by hosts against pathogens. The research explored copper’s dual roles, its involvement in various microbial resistance mechanisms, and its interaction with the host’s immune responses.

 

Who was studied?

The study focused on various microbial species, including bacteria and fungi. It delved into the copper homeostasis mechanisms of pathogens like Mycobacterium tuberculosis and Pseudomonas aeruginosa, and also examined model organisms such as Saccharomyces cerevisiae to understand copper’s role in microbial pathogenesis and resistance.

 

What were the most important findings?

Significant findings from the study demonstrate that copper is utilized by hosts as an antimicrobial agent, significantly impacting pathogen growth and survival. Additionally, pathogens have evolved sophisticated mechanisms to counteract copper toxicity. These adaptations include the development of specific copper pumps and regulatory proteins that meticulously manage copper uptake and expulsion. Moreover, copper is found to play a critical role in the immune defense strategy of hosts, substantially influencing the outcomes of infections. These insights underscore the complex interplay between copper, pathogens, and host defenses.

 

What are the greatest implications of this study?

The implications of this research are broad and significant for both healthcare and environmental management. Understanding copper’s role in microbial pathogenesis could lead to the development of new antimicrobial strategies and treatments that leverage copper’s toxic effects on pathogens. Additionally, this knowledge could inform the use of copper in medical and environmental applications to control pathogen growth, thereby reducing infection rates and enhancing public health safety.

Join the Roundtable

Contribute to published consensus reports, connect with top clinicians and researchers, and receive exclusive invitations to roundtable conferences.