Research Feeds

View All
Maternal Iron Deficiency Anemia Affects Postpartum Emotions and Cognition The Key Element Role of Metallophores in the Pathogenicity and Virulence of Staphylococcus aureus: A Review 919 Syrup Alleviates Postpartum Depression by Modulating the Structure and Metabolism of Gut Microbes and Affecting the Function of the Hippocampal GABA/Glutamate System Gut microbiota: Linking nutrition and perinatal depression The role of gut microbiota and blood metabolites in postpartum depression: A Mendelian randomization analysis. Treatment of postpartum depression: Clinical, psychological and pharmacological options Effect of Lactobacillus rhamnosus HN001 in Pregnancy on Postpartum Symptoms of Depression and Anxiety: A Randomised Double-blind Placebo-controlled Trial The Role ofNutrient Supplementation to Prevent Perinatal Depression. A Narrative Review The effectiveness of iron supplementation for postpartum depression Lugdunin amplifies innate immune responses in the skin in synergy with host- and microbiota-derived factors 1H NMR- based metabolomics approaches as non-invasive tools for diagnosis of endometriosis A Comparative Study of Blood Levels of Manganese, Some Macroelements and Heavy Metals in Obese and Non-Obese Polycystic Ovary Syndrome Patients A Comparative Study of the Gut Microbiota Associated With Immunoglobulin a Nephropathy and Membranous Nephropathy A comparative study of the gut microbiota in immune-mediated inflammatory diseases-does a common dysbiosis exist? A comparative study of the gut microbiota in immune-mediated inflammatory diseases-does a common dysbiosis exist?

Microbial Dysbiosis Is Associated with Human Breast Cancer Original paper

Researched by:

  • Karen Pendergrass ID
    Karen Pendergrass

    User avatarKaren Pendergrass is a microbiome researcher specializing in microbiome-targeted interventions (MBTIs). She systematically analyzes scientific literature to identify microbial patterns, develop hypotheses, and validate interventions. As the founder of the Microbiome Signatures Database, she bridges microbiome research with clinical practice. In 2012, based on her own investigative research, she became the first documented case of FMT for Celiac Disease—four years before the first published case study.

March 18, 2025

  • Women’s Health
    Women’s Health

    Women’s health, a vital aspect of medical science, encompasses various conditions unique to women’s physiological makeup. Historically, women were often excluded from clinical research, leading to a gap in understanding the intricacies of women’s health needs. However, recent advancements have highlighted the significant role that the microbiome plays in these conditions, offering new insights and potential therapies. MicrobiomeSignatures.com is at the forefront of exploring the microbiome signature of each of these conditions to unravel the etiology of these diseases and develop targeted microbiome therapies.

  • Breast Cancer
    Breast Cancer

    Traditionally linked to genetic predispositions and environmental exposures, emerging evidence highlights the microbiome as a critical and underappreciated factor influencing breast cancer progression, immune response, and treatment outcomes.

Researched by:

  • Karen Pendergrass ID
    Karen Pendergrass

    User avatarKaren Pendergrass is a microbiome researcher specializing in microbiome-targeted interventions (MBTIs). She systematically analyzes scientific literature to identify microbial patterns, develop hypotheses, and validate interventions. As the founder of the Microbiome Signatures Database, she bridges microbiome research with clinical practice. In 2012, based on her own investigative research, she became the first documented case of FMT for Celiac Disease—four years before the first published case study.

Last Updated: 2025

Microbiome Signatures identifies and validates condition-specific microbiome shifts and interventions to accelerate clinical translation. Our multidisciplinary team supports clinicians, researchers, and innovators in turning microbiome science into actionable medicine.

Karen Pendergrass

Karen Pendergrass is a microbiome researcher specializing in microbiome-targeted interventions (MBTIs). She systematically analyzes scientific literature to identify microbial patterns, develop hypotheses, and validate interventions. As the founder of the Microbiome Signatures Database, she bridges microbiome research with clinical practice. In 2012, based on her own investigative research, she became the first documented case of FMT for Celiac Disease—four years before the first published case study.

What Was Studied?

This study examined the microbiota present in breast tumor tissue compared to paired normal breast tissue from the same individuals, as well as healthy breast tissue from individuals without breast cancer. Using next-generation sequencing and quantitative PCR, the research aimed to identify differences in microbial composition, bacterial load, and their potential impact on the tumor microenvironment and breast cancer progression.

Who Was Studied?

The study included 20 breast cancer patients with estrogen receptor-positive (ER+) tumors, for whom paired tumor and normal adjacent tissue were analyzed. Additional bacterial load analysis included 23 healthy controls undergoing reduction mammoplasty. Gene expression profiling was conducted on tissue from six breast cancer patients and three healthy individuals.

Most Important Findings

The study revealed distinct microbial signatures associated with breast cancer. Methylobacterium radiotolerans was significantly enriched in tumor tissue, while Sphingomonas yanoikuyae was more abundant in paired normal tissue. A strong inverse correlation between the abundance of these two species was observed in normal tissue, but not in tumor tissue. Importantly, bacterial load in tumor tissue was markedly reduced compared to both paired normal and healthy breast tissue, with advanced-stage tumors exhibiting the lowest bacterial counts. This reduction in bacterial load correlated with decreased expression of antibacterial response genes, including Toll-like receptors (TLR2, TLR5, and TLR9) and antimicrobial effectors like IL-12A and BPI.

These findings suggest that microbial dysbiosis and a diminished antibacterial immune response in tumor tissue may contribute to breast cancer progression. Additionally, the results highlight the potential diagnostic value of bacterial load as a marker for breast cancer staging.

Greatest Implications

The association between microbial dysbiosis and breast cancer offers novel insights into the disease’s pathogenesis. The depletion of beneficial bacteria, such as Sphingomonas yanoikuyae, and a reduced immune response may create a permissive environment for tumorigenesis. This study supports the exploration of microbiota as a diagnostic tool and potentially as a therapeutic target to restore a healthy microbial balance and enhance immune surveillance. The inverse correlation between bacterial load and tumor stage underscores its potential utility in disease staging and progression monitoring.

Breast Cancer

Traditionally linked to genetic predispositions and environmental exposures, emerging evidence highlights the microbiome as a critical and underappreciated factor influencing breast cancer progression, immune response, and treatment outcomes.

Join the Roundtable

Contribute to published consensus reports, connect with top clinicians and researchers, and receive exclusive invitations to roundtable conferences.