Persistent Organic Pollutants and Endometriosis Original paper
-
Women’s Health
Women’s Health
Women’s health, a vital aspect of medical science, encompasses various conditions unique to women’s physiological makeup. Historically, women were often excluded from clinical research, leading to a gap in understanding the intricacies of women’s health needs. However, recent advancements have highlighted the significant role that the microbiome plays in these conditions, offering new insights and potential therapies. MicrobiomeSignatures.com is at the forefront of exploring the microbiome signature of each of these conditions to unravel the etiology of these diseases and develop targeted microbiome therapies.
-
Endometriosis
Endometriosis
Endometriosis involves ectopic endometrial tissue causing pain and infertility. Validated and Promising Interventions include Hyperbaric Oxygen Therapy (HBOT), Low Nickel Diet, and Metronidazole therapy.
Microbiome Signatures identifies and validates condition-specific microbiome shifts and interventions to accelerate clinical translation. Our multidisciplinary team supports clinicians, researchers, and innovators in turning microbiome science into actionable medicine.
Karen Pendergrass is a microbiome researcher specializing in microbiome-targeted interventions (MBTIs). She systematically analyzes scientific literature to identify microbial patterns, develop hypotheses, and validate interventions. As the founder of the Microbiome Signatures Database, she bridges microbiome research with clinical practice. In 2012, based on her own investigative research, she became the first documented case of FMT for Celiac Disease—four years before the first published case study.
What Was Studied?
This study explored the relationship between persistent organic pollutants (POPs) and the risk of surgically confirmed deep endometriosis by integrating high-resolution metabolomic profiling. It aimed to characterize metabolic changes associated with POP exposure, focusing on polychlorinated biphenyls (PCBs), organochlorinated pesticides (OCPs), and per-/polyfluoroalkyl substances (PFAS). The researchers utilized advanced analytical techniques such as gas and liquid chromatography coupled with high-resolution mass spectrometry (HRMS) and nuclear magnetic resonance (NMR).
Who Was Studied?
A hospital-based case-control cohort in France was recruited, consisting of women with surgically confirmed deep endometriosis and matched controls without the condition. Serum samples were collected from these participants to measure POP levels and conduct comprehensive metabolomic profiling. The study controlled for confounding variables such as demographic and lifestyle factors, ensuring a robust statistical analysis.
What Were the Most Important Findings?
The study identified significant links between specific POPs and endometriosis risk. Trans-nonachlor, an organochlorinated pesticide, emerged as the most strongly associated pollutant, doubling the risk of deep endometriosis. Other key POPs included PCBs 180 and 167. Metabolomic profiling revealed distinctive metabolic disruptions in women with endometriosis. These included elevated serum levels of lactate, ketone bodies, multiple amino acids, reduced bile acids, phosphatidylcholines (PCs), cortisol, and hippuric acid. A noteworthy finding was the metabolite 2-hydroxybutyrate, which correlated with both trans-nonachlor exposure and endometriosis risk, acting as a potential biomarker of the disease and its environmental exposure.
What Are the Greatest Implications of This Study?
This study is groundbreaking in linking POP exposure to metabolic alterations in deep endometriosis, suggesting an environmental component to the disease’s pathogenesis. The findings highlight the potential of metabolomic biomarkers, like 2-hydroxybutyrate, for early diagnosis and monitoring of environmental risk factors. These results emphasize the importance of further research to clarify causal relationships and develop interventions to reduce exposure to harmful pollutants. Clinically, integrating metabolomic and environmental data could improve risk assessment and individualized treatment approaches for endometriosis patients.
Endometriosis involves ectopic endometrial tissue causing pain and infertility. Validated and Promising Interventions include Hyperbaric Oxygen Therapy (HBOT), Low Nickel Diet, and Metronidazole therapy.