2025-09-02 10:38:56
Copper (Cu) majorpublished
Copper is an essential trace element, playing a dual role in microbial pathogenesis, both as a vital cofactor for microbial enzymes and as a toxic weapon used by the host to control infection. The regulation of copper within the body impacts pathogen survival, immune response, and microbiome stability.
Copper serves as both a vital nutrient and a potential toxin, with its regulation having profound effects on microbial pathogenesis and immune responses. In the body, copper interacts with pathogens, either supporting essential enzyme functions or hindering microbial growth through its toxicity. The gastrointestinal tract, immune cells, and bloodstream are key sites where copper plays a crucial role in controlling infection and maintaining microbial balance. Understanding copper’s interactions with the microbiome and host defenses allows for targeted clinical strategies.
I am a biochemist with a deep curiosity for the human microbiome and how it shapes human health, and I enjoy making microbiome science more accessible through research and writing. With 2 years experience in microbiome research, I have curated microbiome studies, analyzed microbial signatures, and now focus on interventions as a Microbiome Signatures and Interventions Research Coordinator.
Microbiome Signatures identifies and validates condition-specific microbiome shifts and interventions to accelerate clinical translation. Our multidisciplinary team supports clinicians, researchers, and innovators in turning microbiome science into actionable medicine.
I am a biochemist with a deep curiosity for the human microbiome and how it shapes human health, and I enjoy making microbiome science more accessible through research and writing. With 2 years experience in microbiome research, I have curated microbiome studies, analyzed microbial signatures, and now focus on interventions as a Microbiome Signatures and Interventions Research Coordinator.
Copper (Cu) plays a dual role in microbial pathogenesis, acting both as an essential cofactor for critical bacterial enzymes and as a potent antimicrobial agent in the host’s immune response.[1] Many pathogens, including Mycobacterium tuberculosis, Pseudomonas aeruginosa, and Salmonella typhimurium, rely on copper for key enzymes such as cytochrome c oxidase and superoxide dismutase, which are crucial for energy production and oxidative stress defense.[2][3] However, the host has evolved sophisticated mechanisms to control Cu availability, using its toxicity as a defense strategy to thwart microbial growth.[4] The principal host niches where copper plays a pivotal role in microbial interactions include the gastrointestinal tract, where dietary Cu influences gut microbiota composition and immune function;[5] the phagolysosomes of immune cells, where a copper burst during infection aids in microbial killing by inducing oxidative stress; and blood and tissue compartments, where the host tightly regulates copper levels through proteins like ceruloplasmin and metallothioneins.[6] Managing copper levels is essential for modulating infection risk. Deficiency in copper impairs immune responses, leading to increased susceptibility to infections.[7] Conversely, copper overload can lead to dysbiosis, disrupting the balance of the microbiome and promoting the growth of copper-resistant pathogens, thus increasing infection risk and complicating treatment efforts.[8]
In saliva, which has a near-neutral pH, copper primarily exists as copper(II) (Cu2+) bound to low-molecular-weight ligands such as histidine-rich peptides (like histatins) and amylase.[9] These ligands help to limit the presence of free ionic copper, ensuring that it is less available to microbes.[10] As food passes through the gastric lumen, where the pH is highly acidic, copper is mostly found as free copper ions (Cu2+), often in the form of copper chloride.[11][12] In this acidic environment, copper remains highly soluble and may exhibit antimicrobial properties. As the pH increases in the small intestine and colon, the chemical form of copper changes. In the small intestine, which has a slightly alkaline pH, copper ions bind with dietary amino acids and organic acids, forming soluble complexes that are easier to absorb.[13] If few binding agents are present, such as in situations with low food content or water, excess copper may precipitate, forming copper hydroxide at higher pH levels.[14] In the colon, where conditions are more anaerobic, certain microbial processes can lead to the precipitation of copper as copper sulfide, further limiting its bioavailability to microbes.[15] In the bloodstream, copper circulates mostly bound to ceruloplasmin, a copper-carrying protein, and also to albumin in complex with histidine.[16] This binding helps regulate copper’s availability while protecting tissues from its toxic effects. In the urine, copper levels are typically low and are primarily bound to ligands such as histidine or citrate.[17]
Pathogens acquire and manage copper through a coordinated set of systems, including importers, metallophores, regulatory proteins, maturation factors, chaperones, storage proteins, and efflux pumps.[18] Maintaining tight control over copper is essential because, while it is needed for key enzymes, it becomes toxic when present in excess.[19] To cope with low copper availability, some bacteria increase the activity of high-affinity copper importers. For example, Mycobacterium tuberculosis produces a specialized ATP-driven transporter (P1B-ATPase (CtpB)) that allows it to take up copper from the environment when levels are scarce.[20] Bacteria secrete metallophores like yersiniabactin to acquire the Cu(II) even under restrictive conditions.[21] Copper-sensing proteins monitor intracellular levels and adjust gene expression accordingly, activating efflux systems and chaperones when copper becomes abundant.[22] Chaperone proteins, such as CopZ in Enterococcus, safely shuttle copper to its cellular targets, including enzymes or efflux pumps, to prevent free copper from causing damage.[23] Excess copper is further managed by storage proteins like metallothioneins, which bind multiple copper ions and prevent toxicity.[24] Bacteria remove surplus copper through efflux systems, including ATP-driven pumps and multi-component export complexes, which expel copper from the cytosol to maintain a balanced internal environment. This multi-layered network allows pathogens to meet their metabolic copper needs while avoiding the harmful effects of metal overload.
Component class | Canonical systems and function |
---|---|
Importer | CtpB P1B-ATPase (Cu2+ uptake) – imports Cu for cupro-enzyme assembly under scarcity (e.g. M. tuberculosis CtpB aids cytochrome oxidase maturation).[25][26] |
Metallophore | Yersiniabactin (Ybt) – secreted siderophore that avidly chelates Cu(II); Ybt–Cu complex is imported by Ybt uptake systems, protecting uropathogenic E. coli from host copper toxicity.[27] |
Regulator | CueR (MerR-family Cu sensor) – activates copA and cueO in E. coli when Cu(I) rises. Redundant systems (e.g. CusRS two-component system in E. coli, RicR in M. tuberculosis) fine-tune expression of Cu detox genes.[28] |
Chaperone | CopZ – cytosolic Cu(I)-binding chaperone in Enterococcus hirae that delivers Cu to the CopY repressor (for sensing) or to CopA exporter for removal. CusF is a periplasmic Cu chaperone in E. coli handing off Cu to the CusCBA pump. |
Storage | Metallothionein (MymT) – small cysteine-rich protein in M. tuberculosis binding up to 6 CuI ions. MymT sequesters excess Cu, preventing mis-metallation and contributing to intracellular Cu tolerance.[29] |
Efflux | CopA – Cu(I)-translocating P-type ATPase exporting cytosolic Cu into periplasm/extracellular space (e.g. Salmonella CopA and its homolog GolT are essential to survive macrophage Cu assault). Multicopper oxidases (CueO) and RND pumps (CusABCF) also remove or detoxify Cu.[30] |
Host proteins such as calprotectin, metallothioneins, and albumin limit copper availability, restricting microbial access to this essential metal. Calprotectin released by neutrophils sequesters copper at infection sites, impairing pathogen enzymes like superoxide dismutase.[31][32] Metallothioneins buffer excess copper in tissues, protecting host cells while starving intracellular bacteria.[33] Albumin in plasma also binds copper, leaving little free metal for microbes.[34] Overall, this host-driven sequestration slows copper-dependent microbial processes and forces pathogens to activate high-affinity uptake and detoxification systems.
Host factor | Microbial consequence for metal-dependent enzymes |
---|---|
Calprotectin | Binds Cu(II) (and Zn/Mn) at infection sites, causing local Cu starvation. Pathogens like Candida and Staphylococcus are deprived of Cu for cuproenzymes (e.g. Cu/Zn-SOD), reducing their ability to neutralize oxidative stress.[35] |
Metallothionein | Sequesters excess CuI in host cells, lowering free Cu in phagocytes.[36] This limits bacterial access to Cu for essential enzymes, and can attenuate growth of intracellular pathogens that require Cu cofactors, while protecting host tissues from Cu-induced damage.[37] |
Albumin–histidine pool | About 10% of serum Cu is loosely bound to albumin and histidine, keeping free Cu ions extremely low.[38] Blood-borne bacteria cannot readily acquire Cu from this complex, restraining Cu-dependent processes (e.g. cytochrome oxidases) during bacteremia. |
Secreted chelators such as metallophores shift competition by capturing Cu and other metals in polymicrobial communities. For example, Yersinia and uropathogenic E. coli secrete yersiniabactin, traditionally an iron siderophore, which also avidly binds Cu(II). By forming stable Cu–yersiniabactin complexes, these bacteria protect themselves from host copper toxicity and simultaneously deprive other microbes of Cu, gaining a competitive edge in the inflamed urinary tract.[39][40] Similarly, Staphylococcus aureus produces staphylopine, a broad-spectrum metallophore that can chelate Zn, Ni, and Cu; this helps S. aureus compete in metal-limited niches such as abscesses.[41] However, metallophores can be double-edged: enteric bacteria overproducing enterobactin (an Fe chelator) inadvertently increase Cu uptake and toxicity, illustrating that one metal scavenging system can render bacteria vulnerable to another metal.[42][43][44] Inflammatory cues increase metallophore production – for instance, during infection or IFN-γ activation, pathogens upregulate metallophore operons as the host floods tissues with Cu.[45] This arms race intensifies under inflammation: as host Cu levels rise, bacteria secrete more chelators to scavenge or neutralize Cu. Clinically, surges in metallophore activity (e.g. in urine or wound fluids) can signal ongoing competition and may correlate with more virulent, metal-scavenging strains.
Metallophore or ligand complex | Capture system and ecological effect |
---|---|
Cu(II)–yersiniabactin | Ybt–Cu complex taken up by Yersiniabactin importer in Yersinia/E. coli. Shields the bacterium from host Cu toxicity by sequestering Cu, and deprives competing microbes of Cu, aiding survival in UTI and gut infections.[46][47] |
Staphylopine | S. aureus opine metallophore (Cnt system) binds Cu2+ (along with Zn/Ni). Cnt transporters import the Cu–staphylopine complex, helping S. aureus acquire metals under nutritional immunity.[48] |
Enterobactin–Cu | Enterobactin (E. coli siderophore) can also bind Cu(II); if reimported via Fe-siderophore receptors, it delivers toxic Cu(I) into the cell.[49][50] This inadvertent capture increases intracellular Cu stress, meaning a host could subvert enterobactin to poison bacteria with Cu.[51] |
When Cu rises relative to other metals, enzymes in non-copper families can misbind Cu, producing toxic or inactive complexes. For instance, excess Cu(I) infiltrates iron–sulfur ([4Fe–4S]) cluster enzymes, displacing iron and causing cluster disassembly.[52] This mismetallation inactivates critical metabolic enzymes (like dehydratases in amino acid synthesis), leading to growth defects, especially under oxidative stress when Cu mobility increases. Similarly, Cu can occupy zinc-binding sites in enzymes or regulators erroneously – high Cu stress in E. coli mis-metalates the Zn sensor ZntR and Fe sensor Fur, deranging metal homeostasis regulation.[53] These wrong-metal events underlie much of Cu’s bacteriostatic effect: enzymes only functional with Zn or Fe become inactive with Cu or generate harmful radicals via Fenton chemistry.[54] Practical implications are significant: interventions that alter other metals can exacerbate or mitigate Cu toxicity. For example, Zn supplementation might protect enzymes from Cu by competitive binding, whereas Mn depletion might force Cu into Mn enzyme sites[55]. Cross-metal crosstalk is therefore crucial – combining copper-targeted strategies with zinc or iron modulation could either synergize or antagonize the effect. Therapeutically, understanding mismetallation informs combination strategies: e.g. simultaneously chelating Cu while supplementing Zn to prevent broad metallo-enzyme collapse. However, these approaches need caution, as relieving Cu stress may revive pathogens’ metalloenzymes. Overall, mismetallation risk highlights the delicate balance in poly-metal interventions.
At-risk enzyme class | Wrong-metal outcome |
---|---|
[4Fe–4S] cluster enzymes | Cu(I) replaces Fe in the cluster, causing cluster loss and enzyme inactivation.[56] Results in metabolic stalling under Cu overload. |
Zn-dependent enzymes | Cu(II) misbinds in Zn sites, yielding inactive enzymes or aberrant redox activity.[57] For example, excess Cu can occupy Zn sites in transcription factors, disturbing gene regulation. Clinical note: Cu–Zn imbalance may underlie dysbiosis when high Cu diets displace Zn in commensal enzyme systems; balancing Zn during Cu-targeted interventions could mitigate collateral damage. |
Metal-sensing regulators | Copper intoxication causes mis-metalation of metal sensors (e.g. Cu binding to Mn-sensor MntR or Co-sensor RcnR).[58] This triggers improper gene responses (maladaptation). Clinically, such mis-sensing may be exploited: host immunity’s Cu burst effectively “blinds” bacterial regulators, an Achilles’ heel for therapeutic targeting.[59] |
In Mycobacterium tuberculosis, a copper-sensitive repressor (RicR) controls a regulon including a metallothionein (MymT) and efflux pumps; this system supports M. tuberculosis survival inside macrophages by detoxifying Cu that the host uses to poison it.[60] Disruption of these Cu defenses attenuates M. tuberculosis mutants lacking Cu-export or sequestration are less virulent in animal models.[61] Similarly, in Streptococcus pneumoniae, the cop operon is required for full virulence.[62] CopA-mediated Cu efflux in pneumococci enables survival in the Cu-rich environments of the host; loss of CopA leads to sensitivity to phagocytic killing and reduced infection severity.[63] These examples illustrate that copper resistance genes often act as virulence factors. Targeting them reduces pathogenicity: e.g., inhibiting a pathogen’s CopA pump causes intracellular Cu accumulation and bacterial death within macrophages.[64] Clinically, the most actionable leverage point is the potential to design therapies that tip the Cu balance against the pathogen – for instance, using drugs to block bacterial Cu efflux or to deliver excess Cu, thereby selectively impairing virulence pathways like oxidative stress defenses.
Targetable node | MBTI concept with predicted effect on pathogenesis |
---|---|
CopA efflux pump (Cu exporter) | Small-molecule CopA inhibitor or Cu-ionophore aimed at Salmonella/Strep. CopA.[65] Intracellular Cu buildup in the pathogen leading to toxicity and attenuated virulence. Blocking CopA would cripple the bacterium’s ability to evade macrophage Cu assault, reducing its survival in host tissues. |
Yersiniabactin metallophore system | Immunotherapeutic targeting of Ybt (e.g. anti-metallophore antibodies or enzyme inhibitors).[66] This can neutralize Ybt so the pathogen cannot sequester Cu, leaving it exposed to host Cu toxicity. |
At elevated exposure, studies report significant microbiome perturbations. Animal models show that chronic high dietary Cu intake induces dysbiosis and reducing beneficial anaerobes.[67] Copper-fed piglets had enriched E. coli populations and a higher incidence of multidrug-resistant strains.[68] The most consistent signal is a loss of microbial diversity and a shift toward copper-tolerant organisms at high Cu levels.[69] In mice, excessive Cu (in drinking water or combined with other metals) caused intestinal inflammation with villus damage and altered community composition.[70] Commensals like butyrate-producing Roseburia and Coprococcus drop in relative abundance under Cu overload, whereas opportunists capable of detoxifying Cu may flourish.[71] Low-level exposures, like normal dietary Cu (within 1–3 mg/day for humans), generally support eubiosis, but deficiency can also imbalance the microbiota by impairing host immunity.[72] Evidence in infants suggests even subtle Cu exposure differences correlate with shifts in Bacteroides and lactic acid bacteria proportions.[73] Overall, a U-shaped relationship is likely: insufficient Cu might predispose to pathogen overgrowth (due to poor immune function), whereas excess Cu directly selects for a narrower, resistance-equipped microbiome.[74] Key outcomes linked to high Cu include reduced richness, lower short-chain fatty acid production, intestinal barrier impairment, and expansion of the resistome..
Exposure or concentration range | Observed or predicted microbiome selection signal |
---|---|
Baseline dietary Cu (1–3 mg Cu/day) | Supports normal microbiome structure (no major selection pressure).[75] Sufficient Cu for host needs helps maintain immune surveillance, so commensals thrive and pathogens are kept in check. |
High feed Cu (150–250 mg/kg in livestock diet) | Selection of Cu-resistant and multidrug-resistant flora. E.g. pig gut with 200 mg/kg Cu had increased E. coli abundance and higher ciprofloxacin resistance rates.[76] Enrichment of Enterococci carrying Cu/antibiotic resistance plasmids; slight drop in overall diversity as sensitive anaerobes are suppressed. |
Excess Cu intake (≥300 mg/kg feed or >10 mg/L water) | Dysbiosis pattern with reduced Firmicutes (butyrate producers) and Lactobacilli, and proliferation of Proteobacteria.[77] High Cu significantly lowered microbiota richness in animal studies.[78] |
Cu-deficient diet (<0.5 mg/day) | Microbiome perturbation via impaired host defenses: increased pathogen colonization risk due to neutrophil dysfunction.[79] |
Chronic copper exposure can co-select for metal and antibiotic resistance. In agricultural settings, long-term copper supplementation in feed has led to bacteria like Enterococcus faecium and E. coli carrying both copper resistance and antibiotic resistance genes, such as vanA (vancomycin resistance).[80] Copper stress can also promote horizontal gene transfer, increasing antibiotic resistance gene frequency.[81] Environments with copper contamination, such as farms and wastewater, foster bacteria that are both copper-tolerant and antibiotic-resistant.[82]
Metal exposure context | Co-selected resistance phenotype or regulon |
---|---|
High-Cu swine diet | Vancomycin-resistant Enterococcus (VRE) via linked tcrYAZB–vanA plasmid.[83] Also macrolide resistance (erm genes) co-carried with tcrB.[84] The heavy Cu use selects for VRE even without vancomycin use, illustrating metal-driven propagation of clinically relevant AMR. |
Copper in hospital surfaces | Reduced overall bioburden, but any surviving flora are highly copper-tolerant and often multi-drug resistant.[85] For instance, Acinetobacter isolates from Cu-rich environments may have upregulated efflux pumps conferring antiseptic and antibiotic resistance. |
Cu-contaminated soil or water | Elevated class 1 integron (IntI1) levels in environmental bacteria indicate the co-selection of diverse antibiotic resistance genes.[86] These resistant environmental strains can transfer to humans (through food or water), carrying metal and antibiotic resistance in tandem. |
Clinicians and researchers can measure copper levels and its effects using various assays. Serum copper and ceruloplasmin are standard tests; low levels indicate copper deficiency, which is linked to immune dysfunction and recurrent infections, guiding copper supplementation[87][88]. High free serum copper may indicate Wilson’s disease or copper overload, especially when coupled with unexplained microbiome disturbances like diarrhea.[89] Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is used to measure environmental copper exposure, and metagenomic sequencing can identify copper-resistant genes in the microbiome, signaling chronic exposure.[90][91] Fecal calprotectin, an inflammation marker, may also reflect copper sequestration in conditions like IBD. Additionally, copper susceptibility testing of bacterial isolates can detect copper-tolerant strains, alerting to potential co-resistance. In summary, these assays help clinicians adjust copper intake, chelation, and infection control measures as needed.
Copper interactions vary by body site. In the small intestine, excess copper can disrupt the microbiota, promoting copper-tolerant bacteria and causing diarrhea. In the colon, it suppresses beneficial bacteria and reduces short-chain fatty acids. Blood sees increased copper during infection, helping immune cells but also serving as a marker of inflammation. Urine has low copper levels, but excess copper in conditions like Wilson’s disease increases excretion.[92] Wound exudate benefits from copper-infused dressings that kill bacteria and promote healing. These site-specific dynamics guide clinical strategies, from dietary adjustments to medical devices.
Body site | Dominant metal-microbe interaction and actionable cue |
---|---|
Small intestine | Cu absorption site with low microbial density. Excess luminal Cu (from supplements or TPN) can inhibit commensals and cause osmotic diarrhea. [93] Actionable cue: If a patient on high Cu supplements develops GI symptoms, reduce the dose or add Zn to mitigate Cu uptake. Monitor for restoration of normal stool pattern upon adjustment. |
Colon | High dietary Cu leads to selective loss of butyrate-producing flora and overgrowth of Cu-tolerant Enterobacteria.[94] Actionable cue: Chronic loose stools or dysbiosis in someone using copper-rich supplements or water – consider testing colonic flora and advising a lower Cu intake or probiotics that bind Cu. |
Blood | Cu is mostly bound to ceruloplasmin in the blood.[95][96] During infection, ceruloplasmin (with Cu) increases, aiding macrophage antimicrobial activity.[97] Actionable cue: Treat underlying infection; avoid unwarranted Cu supplementation in septic patients to prevent exacerbating oxidative stress. |
Wound exudate | Wound fluids can be therapeutically loaded with Cu via copper-impregnated dressings.[98] Cu2+ in exudate is antimicrobial, reducing biofilm burden and promoting healing angiogenesis. |
Urine | Typically low Cu, so minimal direct effect on microbiota. Human urinary copper content is elevated during UTI caused by uropathogenic Escherichia coli (UPEC)[99] and is also associated with abnormal blood lipid.[100] |
Copper-targeted interventions can either limit or enhance copper availability to pathogens, often paired with strategies for managing other metals.[101] One approach is copper chelation therapy, which uses agents like tetrathiomolybdate or zinc to reduce copper levels in the gut, starving pathogens and reducing inflammation.[102] Zinc supplementation can help maintain copper-zinc balance, preventing harm to beneficial microbes.[103][104] Another strategy involves using copper ionophore drugs like disulfiram, which drives copper into bacterial cells, enhancing pathogen killing.[105] This is especially useful in conditions like tuberculosis, where controlled copper supplementation can “weaponize” copper inside the pathogen.[106] Probiotics with high copper-binding capacity (e.g., Lactobacillus plantarum) can protect the microbiome by chelating excess copper during high-exposure situations.[107] Dietary strategies, such as increasing phytate intake, can reduce copper absorption and mitigate microbiome disturbances.
Intervention | Expected microbial or host-niche effect with caution note |
---|---|
Copper chelation | Binds luminal Cu and lowers free Cu in tissues. The chelators suppress the growth of Cu-reliant pathogens (less Cu for their enzymes) and possibly rebalance toward normal flora.[108] Caution: Prolonged chelation can induce Cu deficiency in host and commensals; pair with Zn supplements to maintain overall metal homeostasis and immune function.[109][110] |
Copper ionophore therapy (disulfiram + Cu) | Drives toxic Cu influx into bacteria.[111] The effects of ionophores include bacterial clearance via intracellular Cu poisoning – effective even against dormant organisms like Mycobacterium tuberculosis.[112] Caution: Must provide a controlled Cu dose; risk of host tissue damage if Cu is not strictly targeted. |
Probiotic with high Cu sequestration | Lactobacillus enriched for metallothionein expression.[113] Probiotic binds excess Cu in gut, liver, kidneys, and brain, protecting commensals and preventing Cu-driven dysbiosis.[114] Caution: Ensure the probiotic itself does not become pathogenic or excessively remove Cu (risking host deficiency). |
Key uncertainties remain in translating copper-microbiome insights to the clinic. First, the field lacks precise in vivo measurements of copper speciation at the host–microbe interface. We need better quantification of “free” vs. protein-bound Cu in niches like the colon mucus or phagolysosome during infection – advanced imaging or sensors could resolve how much Cu microbes truly experience. These measurements would inform safe copper modulation (since current knowledge is inferred largely from in vitro conditions). Intervention strategies targeting copper in infections are underdeveloped. For example, using copper chelators or ionophores as adjunct antimicrobials is promising, but optimal dosing, timing, and combination with other metal interventions remain largely unknown. Rigorous trials are needed to balance efficacy against pathogens with safety for the host microbiota. It is uncertain how to avoid collateral damage to host beneficial microbes when pushing copper levels up or down – identifying microbial markers of impending dysbiosis could help trigger protective measures in real time.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
2025-09-02 10:38:56
Copper (Cu) majorpublished
Samanovic, M. I., Ding, C., Thiele, D. J., & Darwin, K. H. (2012).
Copper in microbial pathogenesis: Meddling with the metal.Cell Host & Microbe, 11(2), 106.
Read ReviewHuang, Z., Cao, L., & Yan, D. (2024).
Inflammatory immunity and bacteriological perspectives: A new direction for copper treatment of sepsis.Journal of Trace Elements in Medicine and Biology, 84, 127456.
Read ReviewSamanovic, M. I., Ding, C., Thiele, D. J., & Darwin, K. H. (2012).
Copper in microbial pathogenesis: Meddling with the metal.Cell Host & Microbe, 11(2), 106.
Read ReviewFesta, R. A., & Thiele, D. J. (2012).
Copper at the Front Line of the Host-Pathogen Battle.PLoS Pathogens, 8(9), e1002887.
Read ReviewZhang, Y., Zhou, J., Dong, Z., Li, G., Wang, J., Li, Y., Wan, D., Yang, H., & Yin, Y. (2019).
Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets.Frontiers in Microbiology, 10, 484922.
Read ReviewFesta, R. A., & Thiele, D. J. (2012).
Copper at the Front Line of the Host-Pathogen Battle.PLoS Pathogens, 8(9), e1002887.
Read ReviewDjoko, K. Y., Ong, Y., Walker, M. J., & McEwan, A. G. (2015).
The Role of Copper and Zinc Toxicity in Innate Immune Defense against Bacterial Pathogens.The Journal of Biological Chemistry, 290(31), 18954.
Read ReviewZhang, Y., Zhou, J., Dong, Z., Li, G., Wang, J., Li, Y., Wan, D., Yang, H., & Yin, Y. (2019).
Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets.Frontiers in Microbiology, 10, 484922.
Read ReviewMelino, S., Santone, C., Nardo, P. D., & Sarkar, B. (2014).
Histatins: Salivary peptides with copper(II)- and zinc(II)-binding motifs.The FEBS Journal, 281(3), 657-672.
Read ReviewConklin, S. E., Bridgman, E. C., Su, Q., Riggs-Gelasco, P., Haas, K. L., & Franz, K. J. (2017).
Specific Histidine Residues Confer Histatin Peptides with Copper-Dependent Activity against Candida albicans.Biochemistry, 56(32), 4244.
Read ReviewGollan, J. L., Davis, P. S., & Deller, D. J. (1971).
Binding of copper by human alimentary secretions.The American Journal of Clinical Nutrition, 24(9), 1025-1027.
Gaetke, L. M., Chow-Johnson, H. S., & Chow, C. K. (2014).
Copper: Toxicological relevance and mechanisms.Archives of Toxicology, 88(11), 1929.
Read ReviewWu, M., Ke, L., Zhi, M., Qin, Y., & Han, J. (2021).
The influence of gastrointestinal pH on speciation of copper in simulated digestive juice.Food Science & Nutrition, 9(9), 5174.
Read ReviewWu, M., Ke, L., Zhi, M., Qin, Y., & Han, J. (2021).
The influence of gastrointestinal pH on speciation of copper in simulated digestive juice.Food Science & Nutrition, 9(9), 5174.
Read ReviewWu, M., Ke, L., Zhi, M., Qin, Y., & Han, J. (2021).
The influence of gastrointestinal pH on speciation of copper in simulated digestive juice.Food Science & Nutrition, 9(9), 5174.
Read ReviewGaetke, L. M., Chow-Johnson, H. S., & Chow, C. K. (2014).
Copper: Toxicological relevance and mechanisms.Archives of Toxicology, 88(11), 1929.
Read ReviewHordyjewska, A., Popiołek, Ł., & Kocot, J. (2014).
The many “faces” of copper in medicine and treatment.Biometals, 27(4), 611.
Read ReviewMaret, W. (2024).
The Extracellular Metallometabolome: Metallophores, Metal Ionophores, and Other Chelating Agents as Natural Products.Natural Product Communications.
Read ReviewHossain, S., Morey, J. R., Neville, S. L., Ganio, K., Radin, J. N., Norambuena, J., Boyd, J. M., McDevitt, C. A., & Kehl-Fie, T. E. (2023).
Host subversion of bacterial metallophore usage drives copper intoxication.MBio, 14(5), e01350-23.
Read ReviewHikal, A. F., Gupta, T., Sakamoto, K., Yahyaoui Azami, H., Watford, W. T., Quinn, F. D., & Karls, R. K. (2021).
CtpB Facilitates Mycobacterium tuberculosis Growth in Copper-Limited Niches.International Journal of Molecular Sciences, 23(10), 5713.
Read ReviewKoh, I., Robinson, A. E., Bandara, N., Rogers, B. E., & Henderson, J. P. (2017).
Copper import in Escherichia coli by the yersiniabactin metallophore system.Nature Chemical Biology, 13(9), 1016.
Solioz, M., & Stoyanov, J. V. (2003).
Copper homeostasis in Enterococcus hirae.FEMS Microbiology Reviews, 27(2-3), 183-195.
Read ReviewCobine PA, George GN, Jones CE, Wickramasinghe WA, Solioz M, Dameron CT.
Copper transfer from the Cu(I) chaperone, CopZ, to the repressor, Zn(II)CopY: metal coordination environments and protein interactions.Biochemistry. 2002 May 7;41(18):5822-9.
Hikal, A. F., Gupta, T., Sakamoto, K., Yahyaoui Azami, H., Watford, W. T., Quinn, F. D., & Karls, R. K. (2021).
CtpB Facilitates Mycobacterium tuberculosis Growth in Copper-Limited Niches.International Journal of Molecular Sciences, 23(10), 5713.
Read ReviewZhou, Y., & Zhang, L. (2023).
The interplay between copper metabolism and microbes: In perspective of host copper-dependent ATPases ATP7A/B.Frontiers in Cellular and Infection Microbiology, 13, 1267931.
Read ReviewChaturvedi, K. S., Hung, C. S., Crowley, J. R., Stapleton, A. E., & Henderson, J. P. (2012).
The siderophore yersiniabactin binds copper to protect pathogens during infection.Nature Chemical Biology, 8(8), 731-736.
Singh, S. K., Grass, G., Rensing, C., & Montfort, W. R. (2004).
Cuprous Oxidase Activity of CueO from Escherichia coli.Journal of Bacteriology, 186(22), 7815.
Read ReviewWolschendorf, F., Ackart, D., Shrestha, T. B., Nolan, S., Lamichhane, G., Wang, Y., Bossmann, S. H., Basaraba, R. J., & Niederweis, M. (2011).
Copper resistance is essential for virulence of Mycobacterium tuberculosis.Proceedings of the National Academy of Sciences, 108(4), 1621-1626.
Read ReviewZhou, Y., & Zhang, L. (2023).
The interplay between copper metabolism and microbes: In perspective of host copper-dependent ATPases ATP7A/B.Frontiers in Cellular and Infection Microbiology, 13, 1267931.
Read ReviewBesold, A. N., Gilston, B. A., Radin, J. N., Ramsoomair, C., Culbertson, E. M., Li, C. X., Cormack, B. P., Chazin, W. J., Kehl-Fie, T. E., & Culotta, V. C. (2018).
Role of Calprotectin in Withholding Zinc and Copper from Candida albicans.Infection and Immunity, 86(2), e00779-17.
Read ReviewAdhikari, J., Stephan, J. R., Rempel, D. L., Nolan, E. M., & Gross, M. L. (2020).
Calcium Binding to the Innate Immune Protein Human Calprotectin Revealed by Integrated Mass Spectrometry.Journal of the American Chemical Society, 142(31), 13372.
Darwin, K. H. (2015).
Mycobacterium tuberculosis and Copper: A Newly Appreciated Defense against an Old Foe?Journal of Biological Chemistry, 290(31), 18962-18966.
Read ReviewTapiero, H., Townsend, D., & Tew, K. (2003).
Trace elements in human physiology and pathology. Copper.Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 57(9), 386.
Read ReviewBesold, A. N., Gilston, B. A., Radin, J. N., Ramsoomair, C., Culbertson, E. M., Li, C. X., Cormack, B. P., Chazin, W. J., Kehl-Fie, T. E., & Culotta, V. C. (2018).
Role of Calprotectin in Withholding Zinc and Copper from Candida albicans.Infection and Immunity, 86(2), e00779-17.
Read ReviewDarwin, K. H. (2015).
Mycobacterium tuberculosis and Copper: A Newly Appreciated Defense against an Old Foe?Journal of Biological Chemistry, 290(31), 18962-18966.
Read ReviewDarwin, K. H. (2015).
Mycobacterium tuberculosis and Copper: A Newly Appreciated Defense against an Old Foe?Journal of Biological Chemistry, 290(31), 18962-18966.
Read ReviewTapiero, H., Townsend, D., & Tew, K. (2003).
Trace elements in human physiology and pathology. Copper.Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 57(9), 386.
Read ReviewChaturvedi, K. S., Hung, C. S., Crowley, J. R., Stapleton, A. E., & Henderson, J. P. (2012).
The siderophore yersiniabactin binds copper to protect pathogens during infection.Nature Chemical Biology, 8(8), 731.
Read ReviewMaret, W. (2024).
The Extracellular Metallometabolome: Metallophores, Metal Ionophores, and Other Chelating Agents as Natural Products.Natural Product Communications.
Read ReviewMaret, W. (2024).
The Extracellular Metallometabolome: Metallophores, Metal Ionophores, and Other Chelating Agents as Natural Products.Natural Product Communications.
Read ReviewMaret, W. (2024).
The Extracellular Metallometabolome: Metallophores, Metal Ionophores, and Other Chelating Agents as Natural Products.Natural Product Communications.
Read ReviewArnold, E. (2024).
Non-classical roles of bacterial siderophores in pathogenesis.Frontiers in Cellular and Infection Microbiology, 14, 1465719.
Read ReviewFord, G. T., Jones, A. D., McRae, K., & Outten, F. W. (2018).
Nickel exposure reduces enterobactin production in Escherichia coli.MicrobiologyOpen, 8(4), e00691.
Read ReviewHossain, S., Morey, J. R., Neville, S. L., Ganio, K., Radin, J. N., Norambuena, J., Boyd, J. M., McDevitt, C. A., & Kehl-Fie, T. E. (2023).
Host subversion of bacterial metallophore usage drives copper intoxication.MBio, 14(5), e01350-23.
Read ReviewChaturvedi, K. S., Hung, C. S., Crowley, J. R., Stapleton, A. E., & Henderson, J. P. (2012).
The siderophore yersiniabactin binds copper to protect pathogens during infection.Nature Chemical Biology, 8(8), 731.
Read ReviewMaret, W. (2024).
The Extracellular Metallometabolome: Metallophores, Metal Ionophores, and Other Chelating Agents as Natural Products.Natural Product Communications.
Read ReviewMaret, W. (2024).
The Extracellular Metallometabolome: Metallophores, Metal Ionophores, and Other Chelating Agents as Natural Products.Natural Product Communications.
Read ReviewMaret, W. (2024).
The Extracellular Metallometabolome: Metallophores, Metal Ionophores, and Other Chelating Agents as Natural Products.Natural Product Communications.
Read ReviewFord, G. T., Jones, A. D., McRae, K., & Outten, F. W. (2018).
Nickel exposure reduces enterobactin production in Escherichia coli.MicrobiologyOpen, 8(4), e00691.
Read ReviewArnold, E. (2024).
Non-classical roles of bacterial siderophores in pathogenesis.Frontiers in Cellular and Infection Microbiology, 14, 1465719.
Read ReviewOsman, D., Foster, A. W., Chen, J., Svedaite, K., Steed, J. W., Huggins, T. G., & Robinson, N. J. (2017).
Fine control of metal concentrations is necessary for cells to discern zinc from cobalt.Nature Communications, 8(1), 1-12.
Read ReviewOsman, D., Foster, A. W., Chen, J., Svedaite, K., Steed, J. W., Huggins, T. G., & Robinson, N. J. (2017).
Fine control of metal concentrations is necessary for cells to discern zinc from cobalt.Nature Communications, 8(1), 1-12.
Read ReviewSmethurst, D. G., & Shcherbik, N. (2021).
Interchangeable utilization of metals: New perspectives on the impacts of metal ions employed in ancient and extant biomolecules.The Journal of Biological Chemistry, 297(6), 101374.
Behtash, F., Abedini, F., Ahmadi, H., Mosavi, S. B., Aghaee, A., Morshedloo, M. R., & Lorenzo, J. M. (2022).
Zinc Application Mitigates Copper Toxicity by Regulating Cu Uptake, Activity of Antioxidant Enzymes, and Improving Physiological Characteristics in Summer Squash.Antioxidants, 11(9), 1688.
Osman, D., Foster, A. W., Chen, J., Svedaite, K., Steed, J. W., Huggins, T. G., & Robinson, N. J. (2017).
Fine control of metal concentrations is necessary for cells to discern zinc from cobalt.Nature Communications, 8(1), 1-12.
Read ReviewBehtash, F., Abedini, F., Ahmadi, H., Mosavi, S. B., Aghaee, A., Morshedloo, M. R., & Lorenzo, J. M. (2022).
Zinc Application Mitigates Copper Toxicity by Regulating Cu Uptake, Activity of Antioxidant Enzymes, and Improving Physiological Characteristics in Summer Squash.Antioxidants, 11(9), 1688.
Osman, D., Foster, A. W., Chen, J., Svedaite, K., Steed, J. W., Huggins, T. G., & Robinson, N. J. (2017).
Fine control of metal concentrations is necessary for cells to discern zinc from cobalt.Nature Communications, 8(1), 1-12.
Read ReviewOsman, D., Foster, A. W., Chen, J., Svedaite, K., Steed, J. W., Huggins, T. G., & Robinson, N. J. (2017).
Fine control of metal concentrations is necessary for cells to discern zinc from cobalt.Nature Communications, 8(1), 1-12.
Read ReviewWolschendorf, F., Ackart, D., Shrestha, T. B., Nolan, S., Lamichhane, G., Wang, Y., Bossmann, S. H., Basaraba, R. J., & Niederweis, M. (2011).
Copper resistance is essential for virulence of Mycobacterium tuberculosis.Proceedings of the National Academy of Sciences, 108(4), 1621-1626.
Read ReviewWolschendorf, F., Ackart, D., Shrestha, T. B., Nolan, S., Lamichhane, G., Wang, Y., Bossmann, S. H., Basaraba, R. J., & Niederweis, M. (2011).
Copper resistance is essential for virulence of Mycobacterium tuberculosis.Proceedings of the National Academy of Sciences, 108(4), 1621-1626.
Read ReviewL Johnson, M. D., Kehl-Fie, T. E., Klein, R., Kelly, J., Burnham, C., Mann, B., & Rosch, J. W. (2015).
Role of Copper Efflux in Pneumococcal Pathogenesis and Resistance to Macrophage-Mediated Immune Clearance.Infection and Immunity, 83(4), 1684.
Read ReviewL Johnson, M. D., Kehl-Fie, T. E., Klein, R., Kelly, J., Burnham, C., Mann, B., & Rosch, J. W. (2015).
Role of Copper Efflux in Pneumococcal Pathogenesis and Resistance to Macrophage-Mediated Immune Clearance.Infection and Immunity, 83(4), 1684.
Read ReviewZhou, Y., & Zhang, L. (2023).
The interplay between copper metabolism and microbes: In perspective of host copper-dependent ATPases ATP7A/B.Frontiers in Cellular and Infection Microbiology, 13, 1267931.
Read ReviewL Johnson, M. D., Kehl-Fie, T. E., Klein, R., Kelly, J., Burnham, C., Mann, B., & Rosch, J. W. (2015).
Role of Copper Efflux in Pneumococcal Pathogenesis and Resistance to Macrophage-Mediated Immune Clearance.Infection and Immunity, 83(4), 1684.
Read ReviewChaturvedi, K. S., Hung, C. S., Crowley, J. R., Stapleton, A. E., & Henderson, J. P. (2012).
The siderophore yersiniabactin binds copper to protect pathogens during infection.Nature Chemical Biology, 8(8), 731.
Read ReviewZhang, Y., Zhou, J., Dong, Z., Li, G., Wang, J., Li, Y., Wan, D., Yang, H., & Yin, Y. (2019).
Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets.Frontiers in Microbiology, 10, 484922.
Read ReviewZhang, Y., Zhou, J., Dong, Z., Li, G., Wang, J., Li, Y., Wan, D., Yang, H., & Yin, Y. (2019).
Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets.Frontiers in Microbiology, 10, 484922.
Read ReviewGiambò, F., Italia, S., Teodoro, M., Briguglio, G., Furnari, N., Catanoso, R. ... Fenga, C. (2021).
Influence of toxic metal exposure on the gut microbiota (Review).World Academy of Sciences Journal, 3, 19.
Read ReviewGiambò, F., Italia, S., Teodoro, M., Briguglio, G., Furnari, N., Catanoso, R. ... Fenga, C. (2021).
Influence of toxic metal exposure on the gut microbiota (Review).World Academy of Sciences Journal, 3, 19.
Read ReviewZhang, Y., Zhou, J., Dong, Z., Li, G., Wang, J., Li, Y., Wan, D., Yang, H., & Yin, Y. (2019).
Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets.Frontiers in Microbiology, 10, 484922.
Read ReviewPajarillo, E. A. B., Lee, E., & Kang, D. (2021).
Trace metals and animal health: Interplay of the gut microbiota with iron, manganese, zinc, and copper.Animal Nutrition, 7(3), 750-761.
Giambò, F., Italia, S., Teodoro, M., Briguglio, G., Furnari, N., Catanoso, R. ... Fenga, C. (2021).
Influence of toxic metal exposure on the gut microbiota (Review).World Academy of Sciences Journal, 3, 19.
Read ReviewDjoko, K. Y., Ong, Y., Walker, M. J., & McEwan, A. G. (2015).
The Role of Copper and Zinc Toxicity in Innate Immune Defense against Bacterial Pathogens.The Journal of Biological Chemistry, 290(31), 18954.
Read ReviewDjoko, K. Y., Ong, Y., Walker, M. J., & McEwan, A. G. (2015).
The Role of Copper and Zinc Toxicity in Innate Immune Defense against Bacterial Pathogens.The Journal of Biological Chemistry, 290(31), 18954.
Read ReviewZhang, Y., Zhou, J., Dong, Z., Li, G., Wang, J., Li, Y., Wan, D., Yang, H., & Yin, Y. (2019).
Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets.Frontiers in Microbiology, 10, 484922.
Read ReviewZhang, Y., Zhou, J., Dong, Z., Li, G., Wang, J., Li, Y., Wan, D., Yang, H., & Yin, Y. (2019).
Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets.Frontiers in Microbiology, 10, 484922.
Read ReviewGiambò, F., Italia, S., Teodoro, M., Briguglio, G., Furnari, N., Catanoso, R. ... Fenga, C. (2021).
Influence of toxic metal exposure on the gut microbiota (Review).World Academy of Sciences Journal, 3, 19.
Read ReviewDjoko, K. Y., Ong, Y., Walker, M. J., & McEwan, A. G. (2015).
The Role of Copper and Zinc Toxicity in Innate Immune Defense against Bacterial Pathogens.The Journal of Biological Chemistry, 290(31), 18954.
Read ReviewZhang, Y., Zhou, J., Dong, Z., Li, G., Wang, J., Li, Y., Wan, D., Yang, H., & Yin, Y. (2019).
Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets.Frontiers in Microbiology, 10, 484922.
Read ReviewYin, Y., Gu, J., Wang, X., Song, W., Zhang, K., Sun, W., Zhang, X., Zhang, Y., & Li, H. (2017).
Effects of Copper Addition on Copper Resistance, Antibiotic Resistance Genes, and intl1 during Swine Manure Composting.Frontiers in Microbiology, 8, 344.
Read ReviewYin, Y., Gu, J., Wang, X., Song, W., Zhang, K., Sun, W., Zhang, X., Zhang, Y., & Li, H. (2017).
Effects of Copper Addition on Copper Resistance, Antibiotic Resistance Genes, and intl1 during Swine Manure Composting.Frontiers in Microbiology, 8, 344.
Read ReviewZhang, Y., Zhou, J., Dong, Z., Li, G., Wang, J., Li, Y., Wan, D., Yang, H., & Yin, Y. (2019).
Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets.Frontiers in Microbiology, 10, 484922.
Read ReviewZhang, Y., Zhou, J., Dong, Z., Li, G., Wang, J., Li, Y., Wan, D., Yang, H., & Yin, Y. (2019).
Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets.Frontiers in Microbiology, 10, 484922.
Read ReviewArendsen, L. P., Thakar, R., & Sultan, A. H. (2019).
The Use of Copper as an Antimicrobial Agent in Health Care, Including Obstetrics and Gynecology.Clinical Microbiology Reviews, 32(4), e00125-18.
Yin, Y., Gu, J., Wang, X., Song, W., Zhang, K., Sun, W., Zhang, X., Zhang, Y., & Li, H. (2017).
Effects of Copper Addition on Copper Resistance, Antibiotic Resistance Genes, and intl1 during Swine Manure Composting.Frontiers in Microbiology, 8, 344.
Read ReviewChillon, T. S., Tuchtenhagen, M., Schwarz, M., Hackler, J., Heller, R., Kaghazian, P., Moghaddam, A., Schomburg, L., Haase, H., Kipp, A. P., Schwerdtle, T., & Maares, M. (2024).
Determination of copper status by five biomarkers in serum of healthy women.Journal of Trace Elements in Medicine and Biology, 84, 127441.
Jafari Z, Spry C; Authors.
Copper and Ceruloplasmin Tests for Children With Global Developmental Delay and Intellectual DisabilityRapid Review [Internet]. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health; 2023 Jan.
Culpepper, T., & Kelkar, A. H. (2021).
Undiagnosed Wilson’s Disease and Fibromyalgia Masking Bowel Perforation.Cureus, 13(2), e13504.
Read ReviewWilschefski, S. C., & Baxter, M. R. (2019).
Inductively Coupled Plasma Mass Spectrometry: Introduction to Analytical Aspects.The Clinical Biochemist Reviews, 40(3), 115.
Xing C, Chen J, Zheng X, Chen L, Chen M, Wang L, Li X.
Functional metagenomic exploration identifies novel prokaryotic copper resistance genes from the soil microbiome.Metallomics. 2020 Mar 1;12(3):387-395.
Culpepper, T., & Kelkar, A. H. (2021).
Undiagnosed Wilson’s Disease and Fibromyalgia Masking Bowel Perforation.Cureus, 13(2), e13504.
Read ReviewZhang, Y., Zhou, J., Dong, Z., Li, G., Wang, J., Li, Y., Wan, D., Yang, H., & Yin, Y. (2019).
Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets.Frontiers in Microbiology, 10, 484922.
Read ReviewZhang, Y., Zhou, J., Dong, Z., Li, G., Wang, J., Li, Y., Wan, D., Yang, H., & Yin, Y. (2019).
Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets.Frontiers in Microbiology, 10, 484922.
Read ReviewLopez MJ, Royer A, Shah NJ.
Biochemistry, Ceruloplasmin. [Updated 2023 Feb 24].In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from:
Djoko, K. Y., Ong, Y., Walker, M. J., & McEwan, A. G. (2015).
The Role of Copper and Zinc Toxicity in Innate Immune Defense against Bacterial Pathogens.The Journal of Biological Chemistry, 290(31), 18954.
Read ReviewDjoko, K. Y., Ong, Y., Walker, M. J., & McEwan, A. G. (2015).
The Role of Copper and Zinc Toxicity in Innate Immune Defense against Bacterial Pathogens.The Journal of Biological Chemistry, 290(31), 18954.
Read ReviewBorkow, G., Roth, T., & Kalinkovich, A. (2022).
Wide Spectrum Potent Antimicrobial Efficacy of Wound Dressings Impregnated with Cuprous Oxide Microparticles.Microbiology Research, 13(3), 366-376.
Read ReviewHyre, A. N., Kavanagh, K., Kock, N. D., Donati, G. L., & Subashchandrabose, S. (2017).
Copper Is a Host Effector Mobilized to Urine during Urinary Tract Infection To Impair Bacterial Colonization.Infection and Immunity, 85(3), e01041-16.
Ma, J., Xie, Y., Zhou, Y., Wang, D., Cao, L., Zhou, M., Wang, X., Wang, B., & Chen, W. (2020).
Urinary copper, systemic inflammation, and blood lipid profiles: Wuhan-Zhuhai cohort study.Environmental Pollution, 267, 115647.
Steunou, A. S., Bourbon, L., Babot, M., Durand, A., Liotenberg, S., Yamaichi, Y., & Ouchane, S. (2020).
Increasing the copper sensitivity of microorganisms by restricting iron supply, a strategy for bio‐management practices.Microbial Biotechnology, 13(5), 1530.
Read ReviewBaldari, S., Rocco, G. D., & Toietta, G. (2020).
Current Biomedical Use of Copper Chelation Therapy.International Journal of Molecular Sciences, 21(3), 1069.
Read ReviewMaywald, M., & Rink, L. (2022).
Zinc in Human Health and Infectious Diseases.Biomolecules, 12(12), 1748.
Read ReviewPrasad, A. S., & Bao, B. (2019).
Molecular Mechanisms of Zinc as a Pro-Antioxidant Mediator: Clinical Therapeutic Implications.Antioxidants, 8(6), 164.
Read ReviewDavoodian, T., & L Johnson, M. D. (2023).
The Promise of Copper Ionophores as Antimicrobials.Current Opinion in Microbiology, 75, 102355.
Read ReviewDalecki, A. G., Haeili, M., Shah, S., Speer, A., Niederweis, M., Kutsch, O., & Wolschendorf, F. (2015).
Disulfiram and Copper Ions Kill Mycobacterium tuberculosis in a Synergistic Manner.Antimicrobial Agents and Chemotherapy, 59(8), 4835.
Read ReviewTian, F., Xiao, Y., Li, X., Zhai, Q., Wang, G., Zhang, Q., Zhang, H., & Chen, W. (2015).
Protective Effects of Lactobacillus plantarum CCFM8246 against Copper Toxicity in Mice.PLoS ONE, 10(11), e0143318.
Read ReviewBaldari, S., Rocco, G. D., & Toietta, G. (2020).
Current Biomedical Use of Copper Chelation Therapy.International Journal of Molecular Sciences, 21(3), 1069.
Read ReviewMaywald, M., & Rink, L. (2022).
Zinc in Human Health and Infectious Diseases.Biomolecules, 12(12), 1748.
Read ReviewPrasad, A. S., & Bao, B. (2019).
Molecular Mechanisms of Zinc as a Pro-Antioxidant Mediator: Clinical Therapeutic Implications.Antioxidants, 8(6), 164.
Read ReviewDalecki, A. G., Haeili, M., Shah, S., Speer, A., Niederweis, M., Kutsch, O., & Wolschendorf, F. (2015).
Disulfiram and Copper Ions Kill Mycobacterium tuberculosis in a Synergistic Manner.Antimicrobial Agents and Chemotherapy, 59(8), 4835.
Read ReviewDavoodian, T., & L Johnson, M. D. (2023).
The Promise of Copper Ionophores as Antimicrobials.Current Opinion in Microbiology, 75, 102355.
Read ReviewGiri, S. S., Kim, H. J., Jung, W. J., Bin Lee, S., Joo, S. J., Gupta, S. K., & Park, S. C. (2024).
Probiotics in addressing heavy metal toxicities in fish farming: Current progress and perspective.Ecotoxicology and Environmental Safety, 282, 116755.
Read ReviewTian, F., Xiao, Y., Li, X., Zhai, Q., Wang, G., Zhang, Q., Zhang, H., & Chen, W. (2015).
Protective Effects of Lactobacillus plantarum CCFM8246 against Copper Toxicity in Mice.PLoS ONE, 10(11), e0143318.
Read Review