Copper is an essential trace element, playing a dual role in microbial pathogenesis, both as a vital cofactor for microbial enzymes and as a toxic weapon used by the host to control infection. The regulation of copper within the body impacts pathogen survival, immune response, and microbiome stability.

Copper (Cu)

Researched by:

  • Divine Aleru ID
    Divine Aleru

    User avatarI am a biochemist with a deep curiosity for the human microbiome and how it shapes human health, and I enjoy making microbiome science more accessible through research and writing. With 2 years experience in microbiome research, I have curated microbiome studies, analyzed microbial signatures, and now focus on interventions as a Microbiome Signatures and Interventions Research Coordinator.

    Read More

September 8, 2025

Copper serves as both a vital nutrient and a potential toxin, with its regulation having profound effects on microbial pathogenesis and immune responses. In the body, copper interacts with pathogens, either supporting essential enzyme functions or hindering microbial growth through its toxicity. The gastrointestinal tract, immune cells, and bloodstream are key sites where copper plays a crucial role in controlling infection and maintaining microbial balance. Understanding copper’s interactions with the microbiome and host defenses allows for targeted clinical strategies.

research-feed Research feed

Researched by:

  • Divine Aleru ID
    Divine Aleru

    User avatarI am a biochemist with a deep curiosity for the human microbiome and how it shapes human health, and I enjoy making microbiome science more accessible through research and writing. With 2 years experience in microbiome research, I have curated microbiome studies, analyzed microbial signatures, and now focus on interventions as a Microbiome Signatures and Interventions Research Coordinator.

    Read More

Last Updated: 2025-09-08

Microbiome Signatures identifies and validates condition-specific microbiome shifts and interventions to accelerate clinical translation. Our multidisciplinary team supports clinicians, researchers, and innovators in turning microbiome science into actionable medicine.

See full history

Divine Aleru

I am a biochemist with a deep curiosity for the human microbiome and how it shapes human health, and I enjoy making microbiome science more accessible through research and writing. With 2 years experience in microbiome research, I have curated microbiome studies, analyzed microbial signatures, and now focus on interventions as a Microbiome Signatures and Interventions Research Coordinator.

Overview

Copper (Cu) plays a dual role in microbial pathogenesis, acting both as an essential cofactor for critical bacterial enzymes and as a potent antimicrobial agent in the host’s immune response.[1] Many pathogens, including Mycobacterium tuberculosis, Pseudomonas aeruginosa, and Salmonella typhimurium, rely on copper for key enzymes such as cytochrome c oxidase and superoxide dismutase, which are crucial for energy production and oxidative stress defense.[2][3] However, the host has evolved sophisticated mechanisms to control Cu availability, using its toxicity as a defense strategy to thwart microbial growth.[4] The principal host niches where copper plays a pivotal role in microbial interactions include the gastrointestinal tract, where dietary Cu influences gut microbiota composition and immune function;[5] the phagolysosomes of immune cells, where a copper burst during infection aids in microbial killing by inducing oxidative stress; and blood and tissue compartments, where the host tightly regulates copper levels through proteins like ceruloplasmin and metallothioneins.[6] Managing copper levels is essential for modulating infection risk. Deficiency in copper impairs immune responses, leading to increased susceptibility to infections.[7] Conversely, copper overload can lead to dysbiosis, disrupting the balance of the microbiome and promoting the growth of copper-resistant pathogens, thus increasing infection risk and complicating treatment efforts.[8]

Chemical speciation across host niches

In saliva, which has a near-neutral pH, copper primarily exists as copper(II) (Cu2+) bound to low-molecular-weight ligands such as histidine-rich peptides (like histatins) and amylase.[9] These ligands help to limit the presence of free ionic copper, ensuring that it is less available to microbes.[10] As food passes through the gastric lumen, where the pH is highly acidic, copper is mostly found as free copper ions (Cu2+), often in the form of copper chloride.[11][12] In this acidic environment, copper remains highly soluble and may exhibit antimicrobial properties. As the pH increases in the small intestine and colon, the chemical form of copper changes. In the small intestine, which has a slightly alkaline pH, copper ions bind with dietary amino acids and organic acids, forming soluble complexes that are easier to absorb.[13] If few binding agents are present, such as in situations with low food content or water, excess copper may precipitate, forming copper hydroxide at higher pH levels.[14] In the colon, where conditions are more anaerobic, certain microbial processes can lead to the precipitation of copper as copper sulfide, further limiting its bioavailability to microbes.[15] In the bloodstream, copper circulates mostly bound to ceruloplasmin, a copper-carrying protein, and also to albumin in complex with histidine.[16] This binding helps regulate copper’s availability while protecting tissues from its toxic effects. In the urine, copper levels are typically low and are primarily bound to ligands such as histidine or citrate.[17]

Microbial acquisition and regulation

Pathogens acquire and manage copper through a coordinated set of systems, including importers, metallophores, regulatory proteins, maturation factors, chaperones, storage proteins, and efflux pumps.[18] Maintaining tight control over copper is essential because, while it is needed for key enzymes, it becomes toxic when present in excess.[19] To cope with low copper availability, some bacteria increase the activity of high-affinity copper importers. For example, Mycobacterium tuberculosis produces a specialized ATP-driven transporter (P1B-ATPase (CtpB)) that allows it to take up copper from the environment when levels are scarce.[20] Bacteria secrete metallophores like yersiniabactin to acquire the Cu(II) even under restrictive conditions.[21] Copper-sensing proteins monitor intracellular levels and adjust gene expression accordingly, activating efflux systems and chaperones when copper becomes abundant.[22] Chaperone proteins, such as CopZ in Enterococcus, safely shuttle copper to its cellular targets, including enzymes or efflux pumps, to prevent free copper from causing damage.[23] Excess copper is further managed by storage proteins like metallothioneins, which bind multiple copper ions and prevent toxicity.[24] Bacteria remove surplus copper through efflux systems, including ATP-driven pumps and multi-component export complexes, which expel copper from the cytosol to maintain a balanced internal environment. This multi-layered network allows pathogens to meet their metabolic copper needs while avoiding the harmful effects of metal overload.

Metal toolkit

Component classCanonical systems and function
ImporterCtpB P1B-ATPase (Cu2+ uptake) – imports Cu for cupro-enzyme assembly under scarcity (e.g. M. tuberculosis CtpB aids cytochrome oxidase maturation).[25][26]
MetallophoreYersiniabactin (Ybt) – secreted siderophore that avidly chelates Cu(II); Ybt–Cu complex is imported by Ybt uptake systems, protecting uropathogenic E. coli from host copper toxicity.[27]
RegulatorCueR (MerR-family Cu sensor) – activates copA and cueO in E. coli when Cu(I) rises. Redundant systems (e.g. CusRS two-component system in E. coli, RicR in M. tuberculosis) fine-tune expression of Cu detox genes.[28]
ChaperoneCopZ – cytosolic Cu(I)-binding chaperone in Enterococcus hirae that delivers Cu to the CopY repressor (for sensing) or to CopA exporter for removal. CusF is a periplasmic Cu chaperone in E. coli handing off Cu to the CusCBA pump.
StorageMetallothionein (MymT) – small cysteine-rich protein in M. tuberculosis binding up to 6 CuI ions. MymT sequesters excess Cu, preventing mis-metallation and contributing to intracellular Cu tolerance.[29]
EffluxCopA – Cu(I)-translocating P-type ATPase exporting cytosolic Cu into periplasm/extracellular space (e.g. Salmonella CopA and its homolog GolT are essential to survive macrophage Cu assault). Multicopper oxidases (CueO) and RND pumps (CusABCF) also remove or detoxify Cu.[30]

Nutritional immunity and host sequestration

Host proteins such as calprotectin, metallothioneins, and albumin limit copper availability, restricting microbial access to this essential metal. Calprotectin released by neutrophils sequesters copper at infection sites, impairing pathogen enzymes like superoxide dismutase.[31][32] Metallothioneins buffer excess copper in tissues, protecting host cells while starving intracellular bacteria.[33] Albumin in plasma also binds copper, leaving little free metal for microbes.[34] Overall, this host-driven sequestration slows copper-dependent microbial processes and forces pathogens to activate high-affinity uptake and detoxification systems.

Host sequestration map

Host factorMicrobial consequence for metal-dependent enzymes
CalprotectinBinds Cu(II) (and Zn/Mn) at infection sites, causing local Cu starvation. Pathogens like Candida and Staphylococcus are deprived of Cu for cuproenzymes (e.g. Cu/Zn-SOD), reducing their ability to neutralize oxidative stress.[35]
MetallothioneinSequesters excess CuI in host cells, lowering free Cu in phagocytes.[36] This limits bacterial access to Cu for essential enzymes, and can attenuate growth of intracellular pathogens that require Cu cofactors, while protecting host tissues from Cu-induced damage.[37]
Albumin–histidine poolAbout 10% of serum Cu is loosely bound to albumin and histidine, keeping free Cu ions extremely low.[38] Blood-borne bacteria cannot readily acquire Cu from this complex, restraining Cu-dependent processes (e.g. cytochrome oxidases) during bacteremia.

Metallophores and community competition

Secreted chelators such as metallophores shift competition by capturing Cu and other metals in polymicrobial communities. For example, Yersinia and uropathogenic E. coli secrete yersiniabactin, traditionally an iron siderophore, which also avidly binds Cu(II). By forming stable Cu–yersiniabactin complexes, these bacteria protect themselves from host copper toxicity and simultaneously deprive other microbes of Cu, gaining a competitive edge in the inflamed urinary tract.[39][40] Similarly, Staphylococcus aureus produces staphylopine, a broad-spectrum metallophore that can chelate Zn, Ni, and Cu; this helps S. aureus compete in metal-limited niches such as abscesses.[41] However, metallophores can be double-edged: enteric bacteria overproducing enterobactin (an Fe chelator) inadvertently increase Cu uptake and toxicity, illustrating that one metal scavenging system can render bacteria vulnerable to another metal.[42][43][44] Inflammatory cues increase metallophore production – for instance, during infection or IFN-γ activation, pathogens upregulate metallophore operons as the host floods tissues with Cu.[45] This arms race intensifies under inflammation: as host Cu levels rise, bacteria secrete more chelators to scavenge or neutralize Cu. Clinically, surges in metallophore activity (e.g. in urine or wound fluids) can signal ongoing competition and may correlate with more virulent, metal-scavenging strains.

Metallophores and capture

Metallophore or ligand complexCapture system and ecological effect
Cu(II)–yersiniabactinYbt–Cu complex taken up by Yersiniabactin importer in Yersinia/E. coli. Shields the bacterium from host Cu toxicity by sequestering Cu, and deprives competing microbes of Cu, aiding survival in UTI and gut infections.[46][47]
StaphylopineS. aureus opine metallophore (Cnt system) binds Cu2+ (along with Zn/Ni). Cnt transporters import the Cu–staphylopine complex, helping S. aureus acquire metals under nutritional immunity.[48]
Enterobactin–CuEnterobactin (E. coli siderophore) can also bind Cu(II); if reimported via Fe-siderophore receptors, it delivers toxic Cu(I) into the cell.[49][50] This inadvertent capture increases intracellular Cu stress, meaning a host could subvert enterobactin to poison bacteria with Cu.[51]

Mismetallation and cross-metal crosstalk

When Cu rises relative to other metals, enzymes in non-copper families can misbind Cu, producing toxic or inactive complexes. For instance, excess Cu(I) infiltrates iron–sulfur ([4Fe–4S]) cluster enzymes, displacing iron and causing cluster disassembly.[52] This mismetallation inactivates critical metabolic enzymes (like dehydratases in amino acid synthesis), leading to growth defects, especially under oxidative stress when Cu mobility increases. Similarly, Cu can occupy zinc-binding sites in enzymes or regulators erroneously – high Cu stress in E. coli mis-metalates the Zn sensor ZntR and Fe sensor Fur, deranging metal homeostasis regulation.[53] These wrong-metal events underlie much of Cu’s bacteriostatic effect: enzymes only functional with Zn or Fe become inactive with Cu or generate harmful radicals via Fenton chemistry.[54] Practical implications are significant: interventions that alter other metals can exacerbate or mitigate Cu toxicity. For example, Zn supplementation might protect enzymes from Cu by competitive binding, whereas Mn depletion might force Cu into Mn enzyme sites[55]. Cross-metal crosstalk is therefore crucial – combining copper-targeted strategies with zinc or iron modulation could either synergize or antagonize the effect. Therapeutically, understanding mismetallation informs combination strategies: e.g. simultaneously chelating Cu while supplementing Zn to prevent broad metallo-enzyme collapse. However, these approaches need caution, as relieving Cu stress may revive pathogens’ metalloenzymes. Overall, mismetallation risk highlights the delicate balance in poly-metal interventions.

Mismetallation map

At-risk enzyme classWrong-metal outcome
[4Fe–4S] cluster enzymesCu(I) replaces Fe in the cluster, causing cluster loss and enzyme inactivation.[56] Results in metabolic stalling under Cu overload.
Zn-dependent enzymesCu(II) misbinds in Zn sites, yielding inactive enzymes or aberrant redox activity.[57] For example, excess Cu can occupy Zn sites in transcription factors, disturbing gene regulation. Clinical note: Cu–Zn imbalance may underlie dysbiosis when high Cu diets displace Zn in commensal enzyme systems; balancing Zn during Cu-targeted interventions could mitigate collateral damage.
Metal-sensing regulatorsCopper intoxication causes mis-metalation of metal sensors (e.g. Cu binding to Mn-sensor MntR or Co-sensor RcnR).[58] This triggers improper gene responses (maladaptation). Clinically, such mis-sensing may be exploited: host immunity’s Cu burst effectively “blinds” bacterial regulators, an Achilles’ heel for therapeutic targeting.[59]

Virulence pathway mapping

In Mycobacterium tuberculosis, a copper-sensitive repressor (RicR) controls a regulon including a metallothionein (MymT) and efflux pumps; this system supports M. tuberculosis survival inside macrophages by detoxifying Cu that the host uses to poison it.[60] Disruption of these Cu defenses attenuates M. tuberculosis mutants lacking Cu-export or sequestration are less virulent in animal models.[61] Similarly, in Streptococcus pneumoniae, the cop operon is required for full virulence.[62] CopA-mediated Cu efflux in pneumococci enables survival in the Cu-rich environments of the host; loss of CopA leads to sensitivity to phagocytic killing and reduced infection severity.[63] These examples illustrate that copper resistance genes often act as virulence factors. Targeting them reduces pathogenicity: e.g., inhibiting a pathogen’s CopA pump causes intracellular Cu accumulation and bacterial death within macrophages.[64] Clinically, the most actionable leverage point is the potential to design therapies that tip the Cu balance against the pathogen – for instance, using drugs to block bacterial Cu efflux or to deliver excess Cu, thereby selectively impairing virulence pathways like oxidative stress defenses.

Virulence targets to MBTIs

Targetable nodeMBTI concept with predicted effect on pathogenesis
CopA efflux pump (Cu exporter)Small-molecule CopA inhibitor or Cu-ionophore aimed at Salmonella/Strep. CopA.[65] Intracellular Cu buildup in the pathogen leading to toxicity and attenuated virulence. Blocking CopA would cripple the bacterium’s ability to evade macrophage Cu assault, reducing its survival in host tissues.
Yersiniabactin metallophore systemImmunotherapeutic targeting of Ybt (e.g. anti-metallophore antibodies or enzyme inhibitors).[66] This can neutralize Ybt so the pathogen cannot sequester Cu, leaving it exposed to host Cu toxicity.

Exposure to microbiome outcomes

At elevated exposure, studies report significant microbiome perturbations. Animal models show that chronic high dietary Cu intake induces dysbiosis and reducing beneficial anaerobes.[67] Copper-fed piglets had enriched E. coli populations and a higher incidence of multidrug-resistant strains.[68] The most consistent signal is a loss of microbial diversity and a shift toward copper-tolerant organisms at high Cu levels.[69] In mice, excessive Cu (in drinking water or combined with other metals) caused intestinal inflammation with villus damage and altered community composition.[70] Commensals like butyrate-producing Roseburia and Coprococcus drop in relative abundance under Cu overload, whereas opportunists capable of detoxifying Cu may flourish.[71] Low-level exposures, like normal dietary Cu (within 1–3 mg/day for humans), generally support eubiosis, but deficiency can also imbalance the microbiota by impairing host immunity.[72] Evidence in infants suggests even subtle Cu exposure differences correlate with shifts in Bacteroides and lactic acid bacteria proportions.[73] Overall, a U-shaped relationship is likely: insufficient Cu might predispose to pathogen overgrowth (due to poor immune function), whereas excess Cu directly selects for a narrower, resistance-equipped microbiome.[74] Key outcomes linked to high Cu include reduced richness, lower short-chain fatty acid production, intestinal barrier impairment, and expansion of the resistome..

Exposure thresholds to selection signals

Exposure or concentration rangeObserved or predicted microbiome selection signal
Baseline dietary Cu (1–3 mg Cu/day)Supports normal microbiome structure (no major selection pressure).[75] Sufficient Cu for host needs helps maintain immune surveillance, so commensals thrive and pathogens are kept in check.
High feed Cu (150–250 mg/kg in livestock diet)Selection of Cu-resistant and multidrug-resistant flora. E.g. pig gut with 200 mg/kg Cu had increased E. coli abundance and higher ciprofloxacin resistance rates.[76] Enrichment of Enterococci carrying Cu/antibiotic resistance plasmids; slight drop in overall diversity as sensitive anaerobes are suppressed.
Excess Cu intake (≥300 mg/kg feed or >10 mg/L water)Dysbiosis pattern with reduced Firmicutes (butyrate producers) and Lactobacilli, and proliferation of Proteobacteria.[77] High Cu significantly lowered microbiota richness in animal studies.[78]
Cu-deficient diet (<0.5 mg/day)Microbiome perturbation via impaired host defenses: increased pathogen colonization risk due to neutrophil dysfunction.[79]

Antimicrobial resistance co-selection

Chronic copper exposure can co-select for metal and antibiotic resistance. In agricultural settings, long-term copper supplementation in feed has led to bacteria like Enterococcus faecium and E. coli carrying both copper resistance and antibiotic resistance genes, such as vanA (vancomycin resistance).[80] Copper stress can also promote horizontal gene transfer, increasing antibiotic resistance gene frequency.[81] Environments with copper contamination, such as farms and wastewater, foster bacteria that are both copper-tolerant and antibiotic-resistant.[82]

AMR co-selection signals

Metal exposure contextCo-selected resistance phenotype or regulon
High-Cu swine dietVancomycin-resistant Enterococcus (VRE) via linked tcrYAZB–vanA plasmid.[83] Also macrolide resistance (erm genes) co-carried with tcrB.[84] The heavy Cu use selects for VRE even without vancomycin use, illustrating metal-driven propagation of clinically relevant AMR.
Copper in hospital surfacesReduced overall bioburden, but any surviving flora are highly copper-tolerant and often multi-drug resistant.[85] For instance, Acinetobacter isolates from Cu-rich environments may have upregulated efflux pumps conferring antiseptic and antibiotic resistance.
Cu-contaminated soil or waterElevated class 1 integron (IntI1) levels in environmental bacteria indicate the co-selection of diverse antibiotic resistance genes.[86] These resistant environmental strains can transfer to humans (through food or water), carrying metal and antibiotic resistance in tandem.

Assays and decision use

Clinicians and researchers can measure copper levels and its effects using various assays. Serum copper and ceruloplasmin are standard tests; low levels indicate copper deficiency, which is linked to immune dysfunction and recurrent infections, guiding copper supplementation[87][88]. High free serum copper may indicate Wilson’s disease or copper overload, especially when coupled with unexplained microbiome disturbances like diarrhea.[89] Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is used to measure environmental copper exposure, and metagenomic sequencing can identify copper-resistant genes in the microbiome, signaling chronic exposure.[90][91] Fecal calprotectin, an inflammation marker, may also reflect copper sequestration in conditions like IBD. Additionally, copper susceptibility testing of bacterial isolates can detect copper-tolerant strains, alerting to potential co-resistance. In summary, these assays help clinicians adjust copper intake, chelation, and infection control measures as needed.

Body-site biogeography

Copper interactions vary by body site. In the small intestine, excess copper can disrupt the microbiota, promoting copper-tolerant bacteria and causing diarrhea. In the colon, it suppresses beneficial bacteria and reduces short-chain fatty acids. Blood sees increased copper during infection, helping immune cells but also serving as a marker of inflammation. Urine has low copper levels, but excess copper in conditions like Wilson’s disease increases excretion.[92] Wound exudate benefits from copper-infused dressings that kill bacteria and promote healing. These site-specific dynamics guide clinical strategies, from dietary adjustments to medical devices.

Site to interaction of interest

Body siteDominant metal-microbe interaction and actionable cue
Small intestineCu absorption site with low microbial density. Excess luminal Cu (from supplements or TPN) can inhibit commensals and cause osmotic diarrhea. [93]
Actionable cue: If a patient on high Cu supplements develops GI symptoms, reduce the dose or add Zn to mitigate Cu uptake. Monitor for restoration of normal stool pattern upon adjustment.
ColonHigh dietary Cu leads to selective loss of butyrate-producing flora and overgrowth of Cu-tolerant Enterobacteria.[94]
Actionable cue: Chronic loose stools or dysbiosis in someone using copper-rich supplements or water – consider testing colonic flora and advising a lower Cu intake or probiotics that bind Cu.
BloodCu is mostly bound to ceruloplasmin in the blood.[95][96] During infection, ceruloplasmin (with Cu) increases, aiding macrophage antimicrobial activity.[97]
Actionable cue: Treat underlying infection; avoid unwarranted Cu supplementation in septic patients to prevent exacerbating oxidative stress.
Wound exudateWound fluids can be therapeutically loaded with Cu via copper-impregnated dressings.[98] Cu2+ in exudate is antimicrobial, reducing biofilm burden and promoting healing angiogenesis.
UrineTypically low Cu, so minimal direct effect on microbiota. Human urinary copper content is elevated during UTI caused by uropathogenic Escherichia coli (UPEC)[99] and is also associated with abnormal blood lipid.[100]

MBTIs and clinical strategies

Copper-targeted interventions can either limit or enhance copper availability to pathogens, often paired with strategies for managing other metals.[101] One approach is copper chelation therapy, which uses agents like tetrathiomolybdate or zinc to reduce copper levels in the gut, starving pathogens and reducing inflammation.[102] Zinc supplementation can help maintain copper-zinc balance, preventing harm to beneficial microbes.[103][104] Another strategy involves using copper ionophore drugs like disulfiram, which drives copper into bacterial cells, enhancing pathogen killing.[105] This is especially useful in conditions like tuberculosis, where controlled copper supplementation can “weaponize” copper inside the pathogen.[106] Probiotics with high copper-binding capacity (e.g., Lactobacillus plantarum) can protect the microbiome by chelating excess copper during high-exposure situations.[107] Dietary strategies, such as increasing phytate intake, can reduce copper absorption and mitigate microbiome disturbances.

Intervention and expected microbial effect

InterventionExpected microbial or host-niche effect with caution note
Copper chelationBinds luminal Cu and lowers free Cu in tissues. The chelators suppress the growth of Cu-reliant pathogens (less Cu for their enzymes) and possibly rebalance toward normal flora.[108]
Caution: Prolonged chelation can induce Cu deficiency in host and commensals; pair with Zn supplements to maintain overall metal homeostasis and immune function.[109][110]
Copper ionophore therapy (disulfiram + Cu)Drives toxic Cu influx into bacteria.[111] The effects of ionophores include bacterial clearance via intracellular Cu poisoning – effective even against dormant organisms like Mycobacterium tuberculosis.[112]
Caution: Must provide a controlled Cu dose; risk of host tissue damage if Cu is not strictly targeted.
Probiotic with high Cu sequestrationLactobacillus enriched for metallothionein expression.[113] Probiotic binds excess Cu in gut, liver, kidneys, and brain, protecting commensals and preventing Cu-driven dysbiosis.[114]
Caution: Ensure the probiotic itself does not become pathogenic or excessively remove Cu (risking host deficiency).

Knowledge gaps and priorities

Key uncertainties remain in translating copper-microbiome insights to the clinic. First, the field lacks precise in vivo measurements of copper speciation at the host–microbe interface. We need better quantification of “free” vs. protein-bound Cu in niches like the colon mucus or phagolysosome during infection – advanced imaging or sensors could resolve how much Cu microbes truly experience. These measurements would inform safe copper modulation (since current knowledge is inferred largely from in vitro conditions). Intervention strategies targeting copper in infections are underdeveloped. For example, using copper chelators or ionophores as adjunct antimicrobials is promising, but optimal dosing, timing, and combination with other metal interventions remain largely unknown. Rigorous trials are needed to balance efficacy against pathogens with safety for the host microbiota. It is uncertain how to avoid collateral damage to host beneficial microbes when pushing copper levels up or down – identifying microbial markers of impending dysbiosis could help trigger protective measures in real time.

Research Feed

Copper in microbial pathogenesis: meddling with the metal
February 16, 2012
/

Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.

Create a free account to unlock this study summary.

Microbiome Insiders can read two study summaries for any topic on Microbiome.

(Get started with your free account)

Copper at the Front Line of the Host-Pathogen Battle
September 20, 2012
/
Metals
Metals

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie

Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.

Create a free account to unlock this study summary.

Microbiome Insiders can read two study summaries for any topic on Microbiome.

(Get started with your free account)

Inflammatory immunity and bacteriological perspectives: A new direction for copper treatment of sepsis
April 16, 2024
/
Metals
Metals

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie

Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.

Create a free account to unlock this study summary.

Microbiome Insiders can read two study summaries for any topic on Microbiome.

(Get started with your free account)

The Role of Copper and Zinc Toxicity in Innate Immune Defense against Bacterial Pathogens
June 8, 2015
/
Metals
Metals

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie

Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.

Create a free account to unlock this study summary.

Microbiome Insiders can read two study summaries for any topic on Microbiome.

(Get started with your free account)

Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets
December 17, 2019
/
Metals
Metals

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie

Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.

Create a free account to unlock this study summary.

Microbiome Insiders can read two study summaries for any topic on Microbiome.

(Get started with your free account)

Dietary copper-fructose interactions alter gut microbial activity in male rats
October 12, 2017
/
Metals
Metals

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie

Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.

Create a free account to unlock this study summary.

Microbiome Insiders can read two study summaries for any topic on Microbiome.

(Get started with your free account)

Specific Histidine Residues Confer Histatin Peptides with Copper-Dependent Activity against Candida albicans
August 15, 2018
/
Metals
Metals

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie

Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.

Create a free account to unlock this study summary.

Microbiome Insiders can read two study summaries for any topic on Microbiome.

(Get started with your free account)

Histatins: Salivary peptides with copper(II)- and zinc(II)-binding motifs
November 13, 2013
/
Metals
Metals

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie

Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.

Create a free account to unlock this study summary.

Microbiome Insiders can read two study summaries for any topic on Microbiome.

(Get started with your free account)

Copper: Toxicological relevance and mechanisms.
February 25, 2015
/
Metals
Metals

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie

Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.

Create a free account to unlock this study summary.

Microbiome Insiders can read two study summaries for any topic on Microbiome.

(Get started with your free account)

The influence of gastrointestinal pH on speciation of copper in simulated digestive juice
July 26, 2021
/
Metals
Metals

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie

Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.

Create a free account to unlock this study summary.

Microbiome Insiders can read two study summaries for any topic on Microbiome.

(Get started with your free account)

The interplay between copper metabolism and microbes: In perspective of host copper-dependent ATPases ATP7A/B
November 30, 2023
/
Metals
Metals

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie

Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.

Create a free account to unlock this study summary.

Microbiome Insiders can read two study summaries for any topic on Microbiome.

(Get started with your free account)

The many “faces” of copper in medicine and treatment
April 20, 2014
/
Metals
Metals

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie

Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.

Create a free account to unlock this study summary.

Microbiome Insiders can read two study summaries for any topic on Microbiome.

(Get started with your free account)

The Extracellular Metallometabolome: Metallophores, Metal Ionophores, and Other Chelating Agents as Natural Products
August 28, 2024
/
Metals
Metals

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie

Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.

Create a free account to unlock this study summary.

Microbiome Insiders can read two study summaries for any topic on Microbiome.

(Get started with your free account)

Host subversion of bacterial metallophore usage drives copper intoxication
September 22, 2023
/
Metals
Metals

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie

Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.

Create a free account to unlock this study summary.

Microbiome Insiders can read two study summaries for any topic on Microbiome.

(Get started with your free account)

CtpB Facilitates Mycobacterium tuberculosis Growth in Copper-Limited Niches
May 20, 2022
/
Metals
Metals

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie

Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.

Create a free account to unlock this study summary.

Microbiome Insiders can read two study summaries for any topic on Microbiome.

(Get started with your free account)

Copper homeostasis in Enterococcus hirae
June 1, 2003
/
Metals
Metals

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie

Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.

Create a free account to unlock this study summary.

Microbiome Insiders can read two study summaries for any topic on Microbiome.

(Get started with your free account)

Cuprous Oxidase Activity of CueO from Escherichia coli.
November 15, 2004
/
Metals
Metals

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie

Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.

Create a free account to unlock this study summary.

Microbiome Insiders can read two study summaries for any topic on Microbiome.

(Get started with your free account)

Copper resistance is essential for virulence of Mycobacterium tuberculosis
January 4, 2011
/
Metals
Metals

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie

Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.

Create a free account to unlock this study summary.

Microbiome Insiders can read two study summaries for any topic on Microbiome.

(Get started with your free account)

Role of Calprotectin in Withholding Zinc and Copper from Candida albicans
January 22, 2018
/
Metals
Metals

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie

Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.

Create a free account to unlock this study summary.

Microbiome Insiders can read two study summaries for any topic on Microbiome.

(Get started with your free account)

The siderophore yersiniabactin binds copper to protect pathogens during infection
July 8, 2012
/
Metals
Metals

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie

Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.

Create a free account to unlock this study summary.

Microbiome Insiders can read two study summaries for any topic on Microbiome.

(Get started with your free account)

Non-classical roles of bacterial siderophores in pathogenesis.
September 20, 2024
/
Metals
Metals

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie

Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.

Create a free account to unlock this study summary.

Microbiome Insiders can read two study summaries for any topic on Microbiome.

(Get started with your free account)

Nickel exposure reduces enterobactin production in Escherichia coli.
July 30, 2018
/
Metals
Metals

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie

Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.

Create a free account to unlock this study summary.

Microbiome Insiders can read two study summaries for any topic on Microbiome.

(Get started with your free account)

Fine control of metal concentrations is necessary for cells to discern zinc from cobalt
December 1, 2017
/
Metals
Metals

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie

Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.

Create a free account to unlock this study summary.

Microbiome Insiders can read two study summaries for any topic on Microbiome.

(Get started with your free account)

Role of Copper Efflux in Pneumococcal Pathogenesis and Resistance to Macrophage-Mediated Immune Clearance
March 17, 2015
/
Metals
Metals

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie

Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.

Create a free account to unlock this study summary.

Microbiome Insiders can read two study summaries for any topic on Microbiome.

(Get started with your free account)

Influence of toxic metal exposure on the gut microbiota (Review)
February 2, 2021
/
Metals
Metals

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie

Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.

Create a free account to unlock this study summary.

Microbiome Insiders can read two study summaries for any topic on Microbiome.

(Get started with your free account)

Effects of Copper Addition on Copper Resistance, Antibiotic Resistance Genes, and intl1 during Swine Manure Composting
March 3, 2017
/
Metals
Metals

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie

Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.

Create a free account to unlock this study summary.

Microbiome Insiders can read two study summaries for any topic on Microbiome.

(Get started with your free account)

Undiagnosed Wilson’s Disease and Fibromyalgia Masking Bowel Perforation
February 13, 2021
/
Metals
Metals

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie

Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.

Create a free account to unlock this study summary.

Microbiome Insiders can read two study summaries for any topic on Microbiome.

(Get started with your free account)

Wide Spectrum Potent Antimicrobial Efficacy of Wound Dressings Impregnated with Cuprous Oxide Microparticles
June 24, 2022
/
Metals
Metals

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie

Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.

Create a free account to unlock this study summary.

Microbiome Insiders can read two study summaries for any topic on Microbiome.

(Get started with your free account)

Increasing the copper sensitivity of microorganisms by restricting iron supply, a strategy for bio‐management practices
June 19, 2020
/
Metals
Metals

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie

Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.

Create a free account to unlock this study summary.

Microbiome Insiders can read two study summaries for any topic on Microbiome.

(Get started with your free account)

Current Biomedical Use of Copper Chelation Therapy
February 6, 2020
/
Metals
Metals

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie

Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.

Create a free account to unlock this study summary.

Microbiome Insiders can read two study summaries for any topic on Microbiome.

(Get started with your free account)

Zinc in Human Health and Infectious Diseases
November 24, 2022
/
Metals
Metals

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie

Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.

Create a free account to unlock this study summary.

Microbiome Insiders can read two study summaries for any topic on Microbiome.

(Get started with your free account)

Molecular Mechanisms of Zinc as a Pro-Antioxidant Mediator: Clinical Therapeutic Implications
June 6, 2019
/
Metals
Metals

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie

Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.

Create a free account to unlock this study summary.

Microbiome Insiders can read two study summaries for any topic on Microbiome.

(Get started with your free account)

The Promise of Copper Ionophores as Antimicrobials
October 1, 2024
/
Metals
Metals

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie

Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.

Create a free account to unlock this study summary.

Microbiome Insiders can read two study summaries for any topic on Microbiome.

(Get started with your free account)

Disulfiram and Copper Ions Kill Mycobacterium tuberculosis in a Synergistic Manner
July 16, 2015
/
Metals
Metals

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie

Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.

Create a free account to unlock this study summary.

Microbiome Insiders can read two study summaries for any topic on Microbiome.

(Get started with your free account)

Protective Effects of Lactobacillus plantarum CCFM8246 against Copper Toxicity in Mice
November 25, 2015
/
Metals
Metals

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie

Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.

Create a free account to unlock this study summary.

Microbiome Insiders can read two study summaries for any topic on Microbiome.

(Get started with your free account)

Probiotics in addressing heavy metal toxicities in fish farming: Current progress and perspective
July 24, 2024
/
Metals
Metals

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie

Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.

Create a free account to unlock this study summary.

Microbiome Insiders can read two study summaries for any topic on Microbiome.

(Get started with your free account)

Update History

2025-09-02 10:38:56

Copper (Cu) major

published

References

  1. Copper in microbial pathogenesis: Meddling with the metal.. Samanovic, M. I., Ding, C., Thiele, D. J., & Darwin, K. H. (2012).. (Cell Host & Microbe, 11(2), 106.)
  2. Inflammatory immunity and bacteriological perspectives: A new direction for copper treatment of sepsis.. Huang, Z., Cao, L., & Yan, D. (2024).. (Journal of Trace Elements in Medicine and Biology, 84, 127456.)
  3. Copper in microbial pathogenesis: Meddling with the metal.. Samanovic, M. I., Ding, C., Thiele, D. J., & Darwin, K. H. (2012).. (Cell Host & Microbe, 11(2), 106.)
  4. Copper at the Front Line of the Host-Pathogen Battle.. Festa, R. A., & Thiele, D. J. (2012).. (PLoS Pathogens, 8(9), e1002887.)
  5. Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets.. Zhang, Y., Zhou, J., Dong, Z., Li, G., Wang, J., Li, Y., Wan, D., Yang, H., & Yin, Y. (2019).. (Frontiers in Microbiology, 10, 484922.)
  6. Copper at the Front Line of the Host-Pathogen Battle.. Festa, R. A., & Thiele, D. J. (2012).. (PLoS Pathogens, 8(9), e1002887.)
  7. The Role of Copper and Zinc Toxicity in Innate Immune Defense against Bacterial Pathogens.. Djoko, K. Y., Ong, Y., Walker, M. J., & McEwan, A. G. (2015).. (The Journal of Biological Chemistry, 290(31), 18954.)
  8. Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets.. Zhang, Y., Zhou, J., Dong, Z., Li, G., Wang, J., Li, Y., Wan, D., Yang, H., & Yin, Y. (2019).. (Frontiers in Microbiology, 10, 484922.)
  9. Histatins: Salivary peptides with copper(II)- and zinc(II)-binding motifs.. Melino, S., Santone, C., Nardo, P. D., & Sarkar, B. (2014).. (The FEBS Journal, 281(3), 657-672.)
  10. Specific Histidine Residues Confer Histatin Peptides with Copper-Dependent Activity against Candida albicans.. Conklin, S. E., Bridgman, E. C., Su, Q., Riggs-Gelasco, P., Haas, K. L., & Franz, K. J. (2017).. (Biochemistry, 56(32), 4244.)
  11. Binding of copper by human alimentary secretions.. Gollan, J. L., Davis, P. S., & Deller, D. J. (1971).. (The American Journal of Clinical Nutrition, 24(9), 1025-1027.)
  12. Copper: Toxicological relevance and mechanisms.. Gaetke, L. M., Chow-Johnson, H. S., & Chow, C. K. (2014).. (Archives of Toxicology, 88(11), 1929.)
  13. The influence of gastrointestinal pH on speciation of copper in simulated digestive juice.. Wu, M., Ke, L., Zhi, M., Qin, Y., & Han, J. (2021).. (Food Science & Nutrition, 9(9), 5174.)
  14. The influence of gastrointestinal pH on speciation of copper in simulated digestive juice.. Wu, M., Ke, L., Zhi, M., Qin, Y., & Han, J. (2021).. (Food Science & Nutrition, 9(9), 5174.)
  15. The influence of gastrointestinal pH on speciation of copper in simulated digestive juice.. Wu, M., Ke, L., Zhi, M., Qin, Y., & Han, J. (2021).. (Food Science & Nutrition, 9(9), 5174.)
  16. Copper: Toxicological relevance and mechanisms.. Gaetke, L. M., Chow-Johnson, H. S., & Chow, C. K. (2014).. (Archives of Toxicology, 88(11), 1929.)
  17. The many “faces” of copper in medicine and treatment.. Hordyjewska, A., Popiołek, Ł., & Kocot, J. (2014).. (Biometals, 27(4), 611.)
  18. The Extracellular Metallometabolome: Metallophores, Metal Ionophores, and Other Chelating Agents as Natural Products.. Maret, W. (2024).. (Natural Product Communications.)
  19. Host subversion of bacterial metallophore usage drives copper intoxication.. Hossain, S., Morey, J. R., Neville, S. L., Ganio, K., Radin, J. N., Norambuena, J., Boyd, J. M., McDevitt, C. A., & Kehl-Fie, T. E. (2023).. (MBio, 14(5), e01350-23.)
  20. CtpB Facilitates Mycobacterium tuberculosis Growth in Copper-Limited Niches.. Hikal, A. F., Gupta, T., Sakamoto, K., Yahyaoui Azami, H., Watford, W. T., Quinn, F. D., & Karls, R. K. (2021).. (International Journal of Molecular Sciences, 23(10), 5713.)
  21. Copper import in Escherichia coli by the yersiniabactin metallophore system.. Koh, I., Robinson, A. E., Bandara, N., Rogers, B. E., & Henderson, J. P. (2017).. (Nature Chemical Biology, 13(9), 1016.)
  22. The Copper Efflux Regulator (CueR).. Hu Y, Liu B.. (Subcell Biochem. 2024;104:17-31.)
  23. Copper homeostasis in Enterococcus hirae.. Solioz, M., & Stoyanov, J. V. (2003).. (FEMS Microbiology Reviews, 27(2-3), 183-195.)
  24. Copper transfer from the Cu(I) chaperone, CopZ, to the repressor, Zn(II)CopY: metal coordination environments and protein interactions.. Cobine PA, George GN, Jones CE, Wickramasinghe WA, Solioz M, Dameron CT.. (Biochemistry. 2002 May 7;41(18):5822-9.)
  25. CtpB Facilitates Mycobacterium tuberculosis Growth in Copper-Limited Niches.. Hikal, A. F., Gupta, T., Sakamoto, K., Yahyaoui Azami, H., Watford, W. T., Quinn, F. D., & Karls, R. K. (2021).. (International Journal of Molecular Sciences, 23(10), 5713.)
  26. The interplay between copper metabolism and microbes: In perspective of host copper-dependent ATPases ATP7A/B.. Zhou, Y., & Zhang, L. (2023).. (Frontiers in Cellular and Infection Microbiology, 13, 1267931.)
  27. The siderophore yersiniabactin binds copper to protect pathogens during infection.. Chaturvedi, K. S., Hung, C. S., Crowley, J. R., Stapleton, A. E., & Henderson, J. P. (2012).. (Nature Chemical Biology, 8(8), 731-736.)
  28. Cuprous Oxidase Activity of CueO from Escherichia coli.. Singh, S. K., Grass, G., Rensing, C., & Montfort, W. R. (2004).. (Journal of Bacteriology, 186(22), 7815.)
  29. Copper resistance is essential for virulence of Mycobacterium tuberculosis.. Wolschendorf, F., Ackart, D., Shrestha, T. B., Nolan, S., Lamichhane, G., Wang, Y., Bossmann, S. H., Basaraba, R. J., & Niederweis, M. (2011).. (Proceedings of the National Academy of Sciences, 108(4), 1621-1626.)
  30. The interplay between copper metabolism and microbes: In perspective of host copper-dependent ATPases ATP7A/B.. Zhou, Y., & Zhang, L. (2023).. (Frontiers in Cellular and Infection Microbiology, 13, 1267931.)
  31. Role of Calprotectin in Withholding Zinc and Copper from Candida albicans.. Besold, A. N., Gilston, B. A., Radin, J. N., Ramsoomair, C., Culbertson, E. M., Li, C. X., Cormack, B. P., Chazin, W. J., Kehl-Fie, T. E., & Culotta, V. C. (2018).. (Infection and Immunity, 86(2), e00779-17.)
  32. Calcium Binding to the Innate Immune Protein Human Calprotectin Revealed by Integrated Mass Spectrometry.. Adhikari, J., Stephan, J. R., Rempel, D. L., Nolan, E. M., & Gross, M. L. (2020).. (Journal of the American Chemical Society, 142(31), 13372.)
  33. Mycobacterium tuberculosis and Copper: A Newly Appreciated Defense against an Old Foe?. Darwin, K. H. (2015).. (Journal of Biological Chemistry, 290(31), 18962-18966.)
  34. Trace elements in human physiology and pathology. Copper.. Tapiero, H., Townsend, D., & Tew, K. (2003).. (Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 57(9), 386.)
  35. Role of Calprotectin in Withholding Zinc and Copper from Candida albicans.. Besold, A. N., Gilston, B. A., Radin, J. N., Ramsoomair, C., Culbertson, E. M., Li, C. X., Cormack, B. P., Chazin, W. J., Kehl-Fie, T. E., & Culotta, V. C. (2018).. (Infection and Immunity, 86(2), e00779-17.)
  36. Mycobacterium tuberculosis and Copper: A Newly Appreciated Defense against an Old Foe?. Darwin, K. H. (2015).. (Journal of Biological Chemistry, 290(31), 18962-18966.)
  37. Mycobacterium tuberculosis and Copper: A Newly Appreciated Defense against an Old Foe?. Darwin, K. H. (2015).. (Journal of Biological Chemistry, 290(31), 18962-18966.)
  38. Trace elements in human physiology and pathology. Copper.. Tapiero, H., Townsend, D., & Tew, K. (2003).. (Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 57(9), 386.)
  39. The siderophore yersiniabactin binds copper to protect pathogens during infection.. Chaturvedi, K. S., Hung, C. S., Crowley, J. R., Stapleton, A. E., & Henderson, J. P. (2012).. (Nature Chemical Biology, 8(8), 731.)
  40. The Extracellular Metallometabolome: Metallophores, Metal Ionophores, and Other Chelating Agents as Natural Products.. Maret, W. (2024).. (Natural Product Communications.)
  41. The Extracellular Metallometabolome: Metallophores, Metal Ionophores, and Other Chelating Agents as Natural Products.. Maret, W. (2024).. (Natural Product Communications.)
  42. The Extracellular Metallometabolome: Metallophores, Metal Ionophores, and Other Chelating Agents as Natural Products.. Maret, W. (2024).. (Natural Product Communications.)
  43. Non-classical roles of bacterial siderophores in pathogenesis.. Arnold, E. (2024).. (Frontiers in Cellular and Infection Microbiology, 14, 1465719.)
  44. Nickel exposure reduces enterobactin production in Escherichia coli.. Ford, G. T., Jones, A. D., McRae, K., & Outten, F. W. (2018).. (MicrobiologyOpen, 8(4), e00691.)
  45. Host subversion of bacterial metallophore usage drives copper intoxication.. Hossain, S., Morey, J. R., Neville, S. L., Ganio, K., Radin, J. N., Norambuena, J., Boyd, J. M., McDevitt, C. A., & Kehl-Fie, T. E. (2023).. (MBio, 14(5), e01350-23.)
  46. The siderophore yersiniabactin binds copper to protect pathogens during infection.. Chaturvedi, K. S., Hung, C. S., Crowley, J. R., Stapleton, A. E., & Henderson, J. P. (2012).. (Nature Chemical Biology, 8(8), 731.)
  47. The Extracellular Metallometabolome: Metallophores, Metal Ionophores, and Other Chelating Agents as Natural Products.. Maret, W. (2024).. (Natural Product Communications.)
  48. The Extracellular Metallometabolome: Metallophores, Metal Ionophores, and Other Chelating Agents as Natural Products.. Maret, W. (2024).. (Natural Product Communications.)
  49. The Extracellular Metallometabolome: Metallophores, Metal Ionophores, and Other Chelating Agents as Natural Products.. Maret, W. (2024).. (Natural Product Communications.)
  50. Nickel exposure reduces enterobactin production in Escherichia coli.. Ford, G. T., Jones, A. D., McRae, K., & Outten, F. W. (2018).. (MicrobiologyOpen, 8(4), e00691.)
  51. Non-classical roles of bacterial siderophores in pathogenesis.. Arnold, E. (2024).. (Frontiers in Cellular and Infection Microbiology, 14, 1465719.)
  52. Fine control of metal concentrations is necessary for cells to discern zinc from cobalt.. Osman, D., Foster, A. W., Chen, J., Svedaite, K., Steed, J. W., Huggins, T. G., & Robinson, N. J. (2017).. (Nature Communications, 8(1), 1-12.)
  53. Fine control of metal concentrations is necessary for cells to discern zinc from cobalt.. Osman, D., Foster, A. W., Chen, J., Svedaite, K., Steed, J. W., Huggins, T. G., & Robinson, N. J. (2017).. (Nature Communications, 8(1), 1-12.)
  54. Interchangeable utilization of metals: New perspectives on the impacts of metal ions employed in ancient and extant biomolecules.. Smethurst, D. G., & Shcherbik, N. (2021).. (The Journal of Biological Chemistry, 297(6), 101374.)
  55. Zinc Application Mitigates Copper Toxicity by Regulating Cu Uptake, Activity of Antioxidant Enzymes, and Improving Physiological Characteristics in Summer Squash.. Behtash, F., Abedini, F., Ahmadi, H., Mosavi, S. B., Aghaee, A., Morshedloo, M. R., & Lorenzo, J. M. (2022).. (Antioxidants, 11(9), 1688.)
  56. Fine control of metal concentrations is necessary for cells to discern zinc from cobalt.. Osman, D., Foster, A. W., Chen, J., Svedaite, K., Steed, J. W., Huggins, T. G., & Robinson, N. J. (2017).. (Nature Communications, 8(1), 1-12.)
  57. Zinc Application Mitigates Copper Toxicity by Regulating Cu Uptake, Activity of Antioxidant Enzymes, and Improving Physiological Characteristics in Summer Squash.. Behtash, F., Abedini, F., Ahmadi, H., Mosavi, S. B., Aghaee, A., Morshedloo, M. R., & Lorenzo, J. M. (2022).. (Antioxidants, 11(9), 1688.)
  58. Fine control of metal concentrations is necessary for cells to discern zinc from cobalt.. Osman, D., Foster, A. W., Chen, J., Svedaite, K., Steed, J. W., Huggins, T. G., & Robinson, N. J. (2017).. (Nature Communications, 8(1), 1-12.)
  59. Fine control of metal concentrations is necessary for cells to discern zinc from cobalt.. Osman, D., Foster, A. W., Chen, J., Svedaite, K., Steed, J. W., Huggins, T. G., & Robinson, N. J. (2017).. (Nature Communications, 8(1), 1-12.)
  60. Copper resistance is essential for virulence of Mycobacterium tuberculosis.. Wolschendorf, F., Ackart, D., Shrestha, T. B., Nolan, S., Lamichhane, G., Wang, Y., Bossmann, S. H., Basaraba, R. J., & Niederweis, M. (2011).. (Proceedings of the National Academy of Sciences, 108(4), 1621-1626.)
  61. Copper resistance is essential for virulence of Mycobacterium tuberculosis.. Wolschendorf, F., Ackart, D., Shrestha, T. B., Nolan, S., Lamichhane, G., Wang, Y., Bossmann, S. H., Basaraba, R. J., & Niederweis, M. (2011).. (Proceedings of the National Academy of Sciences, 108(4), 1621-1626.)
  62. Role of Copper Efflux in Pneumococcal Pathogenesis and Resistance to Macrophage-Mediated Immune Clearance.. L Johnson, M. D., Kehl-Fie, T. E., Klein, R., Kelly, J., Burnham, C., Mann, B., & Rosch, J. W. (2015).. (Infection and Immunity, 83(4), 1684.)
  63. Role of Copper Efflux in Pneumococcal Pathogenesis and Resistance to Macrophage-Mediated Immune Clearance.. L Johnson, M. D., Kehl-Fie, T. E., Klein, R., Kelly, J., Burnham, C., Mann, B., & Rosch, J. W. (2015).. (Infection and Immunity, 83(4), 1684.)
  64. The interplay between copper metabolism and microbes: In perspective of host copper-dependent ATPases ATP7A/B.. Zhou, Y., & Zhang, L. (2023).. (Frontiers in Cellular and Infection Microbiology, 13, 1267931.)
  65. Role of Copper Efflux in Pneumococcal Pathogenesis and Resistance to Macrophage-Mediated Immune Clearance.. L Johnson, M. D., Kehl-Fie, T. E., Klein, R., Kelly, J., Burnham, C., Mann, B., & Rosch, J. W. (2015).. (Infection and Immunity, 83(4), 1684.)
  66. The siderophore yersiniabactin binds copper to protect pathogens during infection.. Chaturvedi, K. S., Hung, C. S., Crowley, J. R., Stapleton, A. E., & Henderson, J. P. (2012).. (Nature Chemical Biology, 8(8), 731.)
  67. Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets.. Zhang, Y., Zhou, J., Dong, Z., Li, G., Wang, J., Li, Y., Wan, D., Yang, H., & Yin, Y. (2019).. (Frontiers in Microbiology, 10, 484922.)
  68. Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets.. Zhang, Y., Zhou, J., Dong, Z., Li, G., Wang, J., Li, Y., Wan, D., Yang, H., & Yin, Y. (2019).. (Frontiers in Microbiology, 10, 484922.)
  69. Influence of toxic metal exposure on the gut microbiota (Review).. Giambò, F., Italia, S., Teodoro, M., Briguglio, G., Furnari, N., Catanoso, R. ... Fenga, C. (2021).. (World Academy of Sciences Journal, 3, 19.)
  70. Influence of toxic metal exposure on the gut microbiota (Review).. Giambò, F., Italia, S., Teodoro, M., Briguglio, G., Furnari, N., Catanoso, R. ... Fenga, C. (2021).. (World Academy of Sciences Journal, 3, 19.)
  71. Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets.. Zhang, Y., Zhou, J., Dong, Z., Li, G., Wang, J., Li, Y., Wan, D., Yang, H., & Yin, Y. (2019).. (Frontiers in Microbiology, 10, 484922.)
  72. Trace metals and animal health: Interplay of the gut microbiota with iron, manganese, zinc, and copper.. Pajarillo, E. A. B., Lee, E., & Kang, D. (2021).. (Animal Nutrition, 7(3), 750-761.)
  73. Influence of toxic metal exposure on the gut microbiota (Review).. Giambò, F., Italia, S., Teodoro, M., Briguglio, G., Furnari, N., Catanoso, R. ... Fenga, C. (2021).. (World Academy of Sciences Journal, 3, 19.)
  74. The Role of Copper and Zinc Toxicity in Innate Immune Defense against Bacterial Pathogens.. Djoko, K. Y., Ong, Y., Walker, M. J., & McEwan, A. G. (2015).. (The Journal of Biological Chemistry, 290(31), 18954.)
  75. The Role of Copper and Zinc Toxicity in Innate Immune Defense against Bacterial Pathogens.. Djoko, K. Y., Ong, Y., Walker, M. J., & McEwan, A. G. (2015).. (The Journal of Biological Chemistry, 290(31), 18954.)
  76. Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets.. Zhang, Y., Zhou, J., Dong, Z., Li, G., Wang, J., Li, Y., Wan, D., Yang, H., & Yin, Y. (2019).. (Frontiers in Microbiology, 10, 484922.)
  77. Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets.. Zhang, Y., Zhou, J., Dong, Z., Li, G., Wang, J., Li, Y., Wan, D., Yang, H., & Yin, Y. (2019).. (Frontiers in Microbiology, 10, 484922.)
  78. Influence of toxic metal exposure on the gut microbiota (Review).. Giambò, F., Italia, S., Teodoro, M., Briguglio, G., Furnari, N., Catanoso, R. ... Fenga, C. (2021).. (World Academy of Sciences Journal, 3, 19.)
  79. The Role of Copper and Zinc Toxicity in Innate Immune Defense against Bacterial Pathogens.. Djoko, K. Y., Ong, Y., Walker, M. J., & McEwan, A. G. (2015).. (The Journal of Biological Chemistry, 290(31), 18954.)
  80. Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets.. Zhang, Y., Zhou, J., Dong, Z., Li, G., Wang, J., Li, Y., Wan, D., Yang, H., & Yin, Y. (2019).. (Frontiers in Microbiology, 10, 484922.)
  81. Effects of Copper Addition on Copper Resistance, Antibiotic Resistance Genes, and intl1 during Swine Manure Composting.. Yin, Y., Gu, J., Wang, X., Song, W., Zhang, K., Sun, W., Zhang, X., Zhang, Y., & Li, H. (2017).. (Frontiers in Microbiology, 8, 344.)
  82. Effects of Copper Addition on Copper Resistance, Antibiotic Resistance Genes, and intl1 during Swine Manure Composting.. Yin, Y., Gu, J., Wang, X., Song, W., Zhang, K., Sun, W., Zhang, X., Zhang, Y., & Li, H. (2017).. (Frontiers in Microbiology, 8, 344.)
  83. Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets.. Zhang, Y., Zhou, J., Dong, Z., Li, G., Wang, J., Li, Y., Wan, D., Yang, H., & Yin, Y. (2019).. (Frontiers in Microbiology, 10, 484922.)
  84. Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets.. Zhang, Y., Zhou, J., Dong, Z., Li, G., Wang, J., Li, Y., Wan, D., Yang, H., & Yin, Y. (2019).. (Frontiers in Microbiology, 10, 484922.)
  85. The Use of Copper as an Antimicrobial Agent in Health Care, Including Obstetrics and Gynecology.. Arendsen, L. P., Thakar, R., & Sultan, A. H. (2019).. (Clinical Microbiology Reviews, 32(4), e00125-18.)
  86. Effects of Copper Addition on Copper Resistance, Antibiotic Resistance Genes, and intl1 during Swine Manure Composting.. Yin, Y., Gu, J., Wang, X., Song, W., Zhang, K., Sun, W., Zhang, X., Zhang, Y., & Li, H. (2017).. (Frontiers in Microbiology, 8, 344.)
  87. Determination of copper status by five biomarkers in serum of healthy women.. Chillon, T. S., Tuchtenhagen, M., Schwarz, M., Hackler, J., Heller, R., Kaghazian, P., Moghaddam, A., Schomburg, L., Haase, H., Kipp, A. P., Schwerdtle, T., & Maares, M. (2024).. (Journal of Trace Elements in Medicine and Biology, 84, 127441.)
  88. Copper and Ceruloplasmin Tests for Children With Global Developmental Delay and Intellectual Disability. Jafari Z, Spry C; Authors.. (Rapid Review [Internet]. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health; 2023 Jan.)
  89. Undiagnosed Wilson’s Disease and Fibromyalgia Masking Bowel Perforation.. Culpepper, T., & Kelkar, A. H. (2021).. (Cureus, 13(2), e13504.)
  90. Inductively Coupled Plasma Mass Spectrometry: Introduction to Analytical Aspects.. Wilschefski, S. C., & Baxter, M. R. (2019).. (The Clinical Biochemist Reviews, 40(3), 115.)
  91. Functional metagenomic exploration identifies novel prokaryotic copper resistance genes from the soil microbiome.. Xing C, Chen J, Zheng X, Chen L, Chen M, Wang L, Li X.. (Metallomics. 2020 Mar 1;12(3):387-395.)
  92. Undiagnosed Wilson’s Disease and Fibromyalgia Masking Bowel Perforation.. Culpepper, T., & Kelkar, A. H. (2021).. (Cureus, 13(2), e13504.)
  93. Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets.. Zhang, Y., Zhou, J., Dong, Z., Li, G., Wang, J., Li, Y., Wan, D., Yang, H., & Yin, Y. (2019).. (Frontiers in Microbiology, 10, 484922.)
  94. Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets.. Zhang, Y., Zhou, J., Dong, Z., Li, G., Wang, J., Li, Y., Wan, D., Yang, H., & Yin, Y. (2019).. (Frontiers in Microbiology, 10, 484922.)
  95. Biochemistry, Ceruloplasmin. [Updated 2023 Feb 24].. Lopez MJ, Royer A, Shah NJ.. (In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from:)
  96. The Role of Copper and Zinc Toxicity in Innate Immune Defense against Bacterial Pathogens.. Djoko, K. Y., Ong, Y., Walker, M. J., & McEwan, A. G. (2015).. (The Journal of Biological Chemistry, 290(31), 18954.)
  97. The Role of Copper and Zinc Toxicity in Innate Immune Defense against Bacterial Pathogens.. Djoko, K. Y., Ong, Y., Walker, M. J., & McEwan, A. G. (2015).. (The Journal of Biological Chemistry, 290(31), 18954.)
  98. Wide Spectrum Potent Antimicrobial Efficacy of Wound Dressings Impregnated with Cuprous Oxide Microparticles.. Borkow, G., Roth, T., & Kalinkovich, A. (2022).. (Microbiology Research, 13(3), 366-376.)
  99. Copper Is a Host Effector Mobilized to Urine during Urinary Tract Infection To Impair Bacterial Colonization.. Hyre, A. N., Kavanagh, K., Kock, N. D., Donati, G. L., & Subashchandrabose, S. (2017).. (Infection and Immunity, 85(3), e01041-16.)
  100. Urinary copper, systemic inflammation, and blood lipid profiles: Wuhan-Zhuhai cohort study.. Ma, J., Xie, Y., Zhou, Y., Wang, D., Cao, L., Zhou, M., Wang, X., Wang, B., & Chen, W. (2020).. (Environmental Pollution, 267, 115647.)
  101. Increasing the copper sensitivity of microorganisms by restricting iron supply, a strategy for bio‐management practices.. Steunou, A. S., Bourbon, L., Babot, M., Durand, A., Liotenberg, S., Yamaichi, Y., & Ouchane, S. (2020).. (Microbial Biotechnology, 13(5), 1530.)
  102. Current Biomedical Use of Copper Chelation Therapy.. Baldari, S., Rocco, G. D., & Toietta, G. (2020).. (International Journal of Molecular Sciences, 21(3), 1069.)
  103. Zinc in Human Health and Infectious Diseases.. Maywald, M., & Rink, L. (2022).. (Biomolecules, 12(12), 1748.)
  104. Molecular Mechanisms of Zinc as a Pro-Antioxidant Mediator: Clinical Therapeutic Implications.. Prasad, A. S., & Bao, B. (2019).. (Antioxidants, 8(6), 164.)
  105. The Promise of Copper Ionophores as Antimicrobials.. Davoodian, T., & L Johnson, M. D. (2023).. (Current Opinion in Microbiology, 75, 102355.)
  106. Disulfiram and Copper Ions Kill Mycobacterium tuberculosis in a Synergistic Manner.. Dalecki, A. G., Haeili, M., Shah, S., Speer, A., Niederweis, M., Kutsch, O., & Wolschendorf, F. (2015).. (Antimicrobial Agents and Chemotherapy, 59(8), 4835.)
  107. Protective Effects of Lactobacillus plantarum CCFM8246 against Copper Toxicity in Mice.. Tian, F., Xiao, Y., Li, X., Zhai, Q., Wang, G., Zhang, Q., Zhang, H., & Chen, W. (2015).. (PLoS ONE, 10(11), e0143318.)
  108. Current Biomedical Use of Copper Chelation Therapy.. Baldari, S., Rocco, G. D., & Toietta, G. (2020).. (International Journal of Molecular Sciences, 21(3), 1069.)
  109. Zinc in Human Health and Infectious Diseases.. Maywald, M., & Rink, L. (2022).. (Biomolecules, 12(12), 1748.)
  110. Molecular Mechanisms of Zinc as a Pro-Antioxidant Mediator: Clinical Therapeutic Implications.. Prasad, A. S., & Bao, B. (2019).. (Antioxidants, 8(6), 164.)
  111. Disulfiram and Copper Ions Kill Mycobacterium tuberculosis in a Synergistic Manner.. Dalecki, A. G., Haeili, M., Shah, S., Speer, A., Niederweis, M., Kutsch, O., & Wolschendorf, F. (2015).. (Antimicrobial Agents and Chemotherapy, 59(8), 4835.)
  112. The Promise of Copper Ionophores as Antimicrobials.. Davoodian, T., & L Johnson, M. D. (2023).. (Current Opinion in Microbiology, 75, 102355.)
  113. Probiotics in addressing heavy metal toxicities in fish farming: Current progress and perspective.. Giri, S. S., Kim, H. J., Jung, W. J., Bin Lee, S., Joo, S. J., Gupta, S. K., & Park, S. C. (2024).. (Ecotoxicology and Environmental Safety, 282, 116755.)
  114. Protective Effects of Lactobacillus plantarum CCFM8246 against Copper Toxicity in Mice.. Tian, F., Xiao, Y., Li, X., Zhai, Q., Wang, G., Zhang, Q., Zhang, H., & Chen, W. (2015).. (PLoS ONE, 10(11), e0143318.)

Samanovic, M. I., Ding, C., Thiele, D. J., & Darwin, K. H. (2012).

Copper in microbial pathogenesis: Meddling with the metal.

Cell Host & Microbe, 11(2), 106.

Read Review

Huang, Z., Cao, L., & Yan, D. (2024).

Inflammatory immunity and bacteriological perspectives: A new direction for copper treatment of sepsis.

Journal of Trace Elements in Medicine and Biology, 84, 127456.

Read Review

Samanovic, M. I., Ding, C., Thiele, D. J., & Darwin, K. H. (2012).

Copper in microbial pathogenesis: Meddling with the metal.

Cell Host & Microbe, 11(2), 106.

Read Review

Festa, R. A., & Thiele, D. J. (2012).

Copper at the Front Line of the Host-Pathogen Battle.

PLoS Pathogens, 8(9), e1002887.

Read Review

Zhang, Y., Zhou, J., Dong, Z., Li, G., Wang, J., Li, Y., Wan, D., Yang, H., & Yin, Y. (2019).

Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets.

Frontiers in Microbiology, 10, 484922.

Read Review

Festa, R. A., & Thiele, D. J. (2012).

Copper at the Front Line of the Host-Pathogen Battle.

PLoS Pathogens, 8(9), e1002887.

Read Review

Djoko, K. Y., Ong, Y., Walker, M. J., & McEwan, A. G. (2015).

The Role of Copper and Zinc Toxicity in Innate Immune Defense against Bacterial Pathogens.

The Journal of Biological Chemistry, 290(31), 18954.

Read Review

Zhang, Y., Zhou, J., Dong, Z., Li, G., Wang, J., Li, Y., Wan, D., Yang, H., & Yin, Y. (2019).

Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets.

Frontiers in Microbiology, 10, 484922.

Read Review

Melino, S., Santone, C., Nardo, P. D., & Sarkar, B. (2014).

Histatins: Salivary peptides with copper(II)- and zinc(II)-binding motifs.

The FEBS Journal, 281(3), 657-672.

Read Review

Conklin, S. E., Bridgman, E. C., Su, Q., Riggs-Gelasco, P., Haas, K. L., & Franz, K. J. (2017).

Specific Histidine Residues Confer Histatin Peptides with Copper-Dependent Activity against Candida albicans.

Biochemistry, 56(32), 4244.

Read Review

Gollan, J. L., Davis, P. S., & Deller, D. J. (1971).

Binding of copper by human alimentary secretions.

The American Journal of Clinical Nutrition, 24(9), 1025-1027.

Gaetke, L. M., Chow-Johnson, H. S., & Chow, C. K. (2014).

Copper: Toxicological relevance and mechanisms.

Archives of Toxicology, 88(11), 1929.

Read Review

Wu, M., Ke, L., Zhi, M., Qin, Y., & Han, J. (2021).

The influence of gastrointestinal pH on speciation of copper in simulated digestive juice.

Food Science & Nutrition, 9(9), 5174.

Read Review

Wu, M., Ke, L., Zhi, M., Qin, Y., & Han, J. (2021).

The influence of gastrointestinal pH on speciation of copper in simulated digestive juice.

Food Science & Nutrition, 9(9), 5174.

Read Review

Wu, M., Ke, L., Zhi, M., Qin, Y., & Han, J. (2021).

The influence of gastrointestinal pH on speciation of copper in simulated digestive juice.

Food Science & Nutrition, 9(9), 5174.

Read Review

Gaetke, L. M., Chow-Johnson, H. S., & Chow, C. K. (2014).

Copper: Toxicological relevance and mechanisms.

Archives of Toxicology, 88(11), 1929.

Read Review

Hordyjewska, A., Popiołek, Ł., & Kocot, J. (2014).

The many “faces” of copper in medicine and treatment.

Biometals, 27(4), 611.

Read Review

Hossain, S., Morey, J. R., Neville, S. L., Ganio, K., Radin, J. N., Norambuena, J., Boyd, J. M., McDevitt, C. A., & Kehl-Fie, T. E. (2023).

Host subversion of bacterial metallophore usage drives copper intoxication.

MBio, 14(5), e01350-23.

Read Review

Hikal, A. F., Gupta, T., Sakamoto, K., Yahyaoui Azami, H., Watford, W. T., Quinn, F. D., & Karls, R. K. (2021).

CtpB Facilitates Mycobacterium tuberculosis Growth in Copper-Limited Niches.

International Journal of Molecular Sciences, 23(10), 5713.

Read Review

Koh, I., Robinson, A. E., Bandara, N., Rogers, B. E., & Henderson, J. P. (2017).

Copper import in Escherichia coli by the yersiniabactin metallophore system.

Nature Chemical Biology, 13(9), 1016.

Hu Y, Liu B.

The Copper Efflux Regulator (CueR).

Subcell Biochem. 2024;104:17-31.

Solioz, M., & Stoyanov, J. V. (2003).

Copper homeostasis in Enterococcus hirae.

FEMS Microbiology Reviews, 27(2-3), 183-195.

Read Review

Cobine PA, George GN, Jones CE, Wickramasinghe WA, Solioz M, Dameron CT.

Copper transfer from the Cu(I) chaperone, CopZ, to the repressor, Zn(II)CopY: metal coordination environments and protein interactions.

Biochemistry. 2002 May 7;41(18):5822-9.

Hikal, A. F., Gupta, T., Sakamoto, K., Yahyaoui Azami, H., Watford, W. T., Quinn, F. D., & Karls, R. K. (2021).

CtpB Facilitates Mycobacterium tuberculosis Growth in Copper-Limited Niches.

International Journal of Molecular Sciences, 23(10), 5713.

Read Review

Zhou, Y., & Zhang, L. (2023).

The interplay between copper metabolism and microbes: In perspective of host copper-dependent ATPases ATP7A/B.

Frontiers in Cellular and Infection Microbiology, 13, 1267931.

Read Review

Chaturvedi, K. S., Hung, C. S., Crowley, J. R., Stapleton, A. E., & Henderson, J. P. (2012).

The siderophore yersiniabactin binds copper to protect pathogens during infection.

Nature Chemical Biology, 8(8), 731-736.

Singh, S. K., Grass, G., Rensing, C., & Montfort, W. R. (2004).

Cuprous Oxidase Activity of CueO from Escherichia coli.

Journal of Bacteriology, 186(22), 7815.

Read Review

Wolschendorf, F., Ackart, D., Shrestha, T. B., Nolan, S., Lamichhane, G., Wang, Y., Bossmann, S. H., Basaraba, R. J., & Niederweis, M. (2011).

Copper resistance is essential for virulence of Mycobacterium tuberculosis.

Proceedings of the National Academy of Sciences, 108(4), 1621-1626.

Read Review

Zhou, Y., & Zhang, L. (2023).

The interplay between copper metabolism and microbes: In perspective of host copper-dependent ATPases ATP7A/B.

Frontiers in Cellular and Infection Microbiology, 13, 1267931.

Read Review

Besold, A. N., Gilston, B. A., Radin, J. N., Ramsoomair, C., Culbertson, E. M., Li, C. X., Cormack, B. P., Chazin, W. J., Kehl-Fie, T. E., & Culotta, V. C. (2018).

Role of Calprotectin in Withholding Zinc and Copper from Candida albicans.

Infection and Immunity, 86(2), e00779-17.

Read Review

Adhikari, J., Stephan, J. R., Rempel, D. L., Nolan, E. M., & Gross, M. L. (2020).

Calcium Binding to the Innate Immune Protein Human Calprotectin Revealed by Integrated Mass Spectrometry.

Journal of the American Chemical Society, 142(31), 13372.

Darwin, K. H. (2015).

Mycobacterium tuberculosis and Copper: A Newly Appreciated Defense against an Old Foe?

Journal of Biological Chemistry, 290(31), 18962-18966.

Read Review

Tapiero, H., Townsend, D., & Tew, K. (2003).

Trace elements in human physiology and pathology. Copper.

Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 57(9), 386.

Read Review

Besold, A. N., Gilston, B. A., Radin, J. N., Ramsoomair, C., Culbertson, E. M., Li, C. X., Cormack, B. P., Chazin, W. J., Kehl-Fie, T. E., & Culotta, V. C. (2018).

Role of Calprotectin in Withholding Zinc and Copper from Candida albicans.

Infection and Immunity, 86(2), e00779-17.

Read Review

Darwin, K. H. (2015).

Mycobacterium tuberculosis and Copper: A Newly Appreciated Defense against an Old Foe?

Journal of Biological Chemistry, 290(31), 18962-18966.

Read Review

Darwin, K. H. (2015).

Mycobacterium tuberculosis and Copper: A Newly Appreciated Defense against an Old Foe?

Journal of Biological Chemistry, 290(31), 18962-18966.

Read Review

Tapiero, H., Townsend, D., & Tew, K. (2003).

Trace elements in human physiology and pathology. Copper.

Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 57(9), 386.

Read Review

Chaturvedi, K. S., Hung, C. S., Crowley, J. R., Stapleton, A. E., & Henderson, J. P. (2012).

The siderophore yersiniabactin binds copper to protect pathogens during infection.

Nature Chemical Biology, 8(8), 731.

Read Review

Arnold, E. (2024).

Non-classical roles of bacterial siderophores in pathogenesis.

Frontiers in Cellular and Infection Microbiology, 14, 1465719.

Read Review

Ford, G. T., Jones, A. D., McRae, K., & Outten, F. W. (2018).

Nickel exposure reduces enterobactin production in Escherichia coli.

MicrobiologyOpen, 8(4), e00691.

Read Review

Hossain, S., Morey, J. R., Neville, S. L., Ganio, K., Radin, J. N., Norambuena, J., Boyd, J. M., McDevitt, C. A., & Kehl-Fie, T. E. (2023).

Host subversion of bacterial metallophore usage drives copper intoxication.

MBio, 14(5), e01350-23.

Read Review

Chaturvedi, K. S., Hung, C. S., Crowley, J. R., Stapleton, A. E., & Henderson, J. P. (2012).

The siderophore yersiniabactin binds copper to protect pathogens during infection.

Nature Chemical Biology, 8(8), 731.

Read Review

Ford, G. T., Jones, A. D., McRae, K., & Outten, F. W. (2018).

Nickel exposure reduces enterobactin production in Escherichia coli.

MicrobiologyOpen, 8(4), e00691.

Read Review

Arnold, E. (2024).

Non-classical roles of bacterial siderophores in pathogenesis.

Frontiers in Cellular and Infection Microbiology, 14, 1465719.

Read Review

Osman, D., Foster, A. W., Chen, J., Svedaite, K., Steed, J. W., Huggins, T. G., & Robinson, N. J. (2017).

Fine control of metal concentrations is necessary for cells to discern zinc from cobalt.

Nature Communications, 8(1), 1-12.

Read Review

Osman, D., Foster, A. W., Chen, J., Svedaite, K., Steed, J. W., Huggins, T. G., & Robinson, N. J. (2017).

Fine control of metal concentrations is necessary for cells to discern zinc from cobalt.

Nature Communications, 8(1), 1-12.

Read Review

Smethurst, D. G., & Shcherbik, N. (2021).

Interchangeable utilization of metals: New perspectives on the impacts of metal ions employed in ancient and extant biomolecules.

The Journal of Biological Chemistry, 297(6), 101374.

Behtash, F., Abedini, F., Ahmadi, H., Mosavi, S. B., Aghaee, A., Morshedloo, M. R., & Lorenzo, J. M. (2022).

Zinc Application Mitigates Copper Toxicity by Regulating Cu Uptake, Activity of Antioxidant Enzymes, and Improving Physiological Characteristics in Summer Squash.

Antioxidants, 11(9), 1688.

Osman, D., Foster, A. W., Chen, J., Svedaite, K., Steed, J. W., Huggins, T. G., & Robinson, N. J. (2017).

Fine control of metal concentrations is necessary for cells to discern zinc from cobalt.

Nature Communications, 8(1), 1-12.

Read Review

Behtash, F., Abedini, F., Ahmadi, H., Mosavi, S. B., Aghaee, A., Morshedloo, M. R., & Lorenzo, J. M. (2022).

Zinc Application Mitigates Copper Toxicity by Regulating Cu Uptake, Activity of Antioxidant Enzymes, and Improving Physiological Characteristics in Summer Squash.

Antioxidants, 11(9), 1688.

Osman, D., Foster, A. W., Chen, J., Svedaite, K., Steed, J. W., Huggins, T. G., & Robinson, N. J. (2017).

Fine control of metal concentrations is necessary for cells to discern zinc from cobalt.

Nature Communications, 8(1), 1-12.

Read Review

Osman, D., Foster, A. W., Chen, J., Svedaite, K., Steed, J. W., Huggins, T. G., & Robinson, N. J. (2017).

Fine control of metal concentrations is necessary for cells to discern zinc from cobalt.

Nature Communications, 8(1), 1-12.

Read Review

Wolschendorf, F., Ackart, D., Shrestha, T. B., Nolan, S., Lamichhane, G., Wang, Y., Bossmann, S. H., Basaraba, R. J., & Niederweis, M. (2011).

Copper resistance is essential for virulence of Mycobacterium tuberculosis.

Proceedings of the National Academy of Sciences, 108(4), 1621-1626.

Read Review

Wolschendorf, F., Ackart, D., Shrestha, T. B., Nolan, S., Lamichhane, G., Wang, Y., Bossmann, S. H., Basaraba, R. J., & Niederweis, M. (2011).

Copper resistance is essential for virulence of Mycobacterium tuberculosis.

Proceedings of the National Academy of Sciences, 108(4), 1621-1626.

Read Review

L Johnson, M. D., Kehl-Fie, T. E., Klein, R., Kelly, J., Burnham, C., Mann, B., & Rosch, J. W. (2015).

Role of Copper Efflux in Pneumococcal Pathogenesis and Resistance to Macrophage-Mediated Immune Clearance.

Infection and Immunity, 83(4), 1684.

Read Review

L Johnson, M. D., Kehl-Fie, T. E., Klein, R., Kelly, J., Burnham, C., Mann, B., & Rosch, J. W. (2015).

Role of Copper Efflux in Pneumococcal Pathogenesis and Resistance to Macrophage-Mediated Immune Clearance.

Infection and Immunity, 83(4), 1684.

Read Review

Zhou, Y., & Zhang, L. (2023).

The interplay between copper metabolism and microbes: In perspective of host copper-dependent ATPases ATP7A/B.

Frontiers in Cellular and Infection Microbiology, 13, 1267931.

Read Review

L Johnson, M. D., Kehl-Fie, T. E., Klein, R., Kelly, J., Burnham, C., Mann, B., & Rosch, J. W. (2015).

Role of Copper Efflux in Pneumococcal Pathogenesis and Resistance to Macrophage-Mediated Immune Clearance.

Infection and Immunity, 83(4), 1684.

Read Review

Chaturvedi, K. S., Hung, C. S., Crowley, J. R., Stapleton, A. E., & Henderson, J. P. (2012).

The siderophore yersiniabactin binds copper to protect pathogens during infection.

Nature Chemical Biology, 8(8), 731.

Read Review

Zhang, Y., Zhou, J., Dong, Z., Li, G., Wang, J., Li, Y., Wan, D., Yang, H., & Yin, Y. (2019).

Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets.

Frontiers in Microbiology, 10, 484922.

Read Review

Zhang, Y., Zhou, J., Dong, Z., Li, G., Wang, J., Li, Y., Wan, D., Yang, H., & Yin, Y. (2019).

Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets.

Frontiers in Microbiology, 10, 484922.

Read Review

Giambò, F., Italia, S., Teodoro, M., Briguglio, G., Furnari, N., Catanoso, R. ... Fenga, C. (2021).

Influence of toxic metal exposure on the gut microbiota (Review).

World Academy of Sciences Journal, 3, 19.

Read Review

Giambò, F., Italia, S., Teodoro, M., Briguglio, G., Furnari, N., Catanoso, R. ... Fenga, C. (2021).

Influence of toxic metal exposure on the gut microbiota (Review).

World Academy of Sciences Journal, 3, 19.

Read Review

Zhang, Y., Zhou, J., Dong, Z., Li, G., Wang, J., Li, Y., Wan, D., Yang, H., & Yin, Y. (2019).

Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets.

Frontiers in Microbiology, 10, 484922.

Read Review

Pajarillo, E. A. B., Lee, E., & Kang, D. (2021).

Trace metals and animal health: Interplay of the gut microbiota with iron, manganese, zinc, and copper.

Animal Nutrition, 7(3), 750-761.

Giambò, F., Italia, S., Teodoro, M., Briguglio, G., Furnari, N., Catanoso, R. ... Fenga, C. (2021).

Influence of toxic metal exposure on the gut microbiota (Review).

World Academy of Sciences Journal, 3, 19.

Read Review

Djoko, K. Y., Ong, Y., Walker, M. J., & McEwan, A. G. (2015).

The Role of Copper and Zinc Toxicity in Innate Immune Defense against Bacterial Pathogens.

The Journal of Biological Chemistry, 290(31), 18954.

Read Review

Djoko, K. Y., Ong, Y., Walker, M. J., & McEwan, A. G. (2015).

The Role of Copper and Zinc Toxicity in Innate Immune Defense against Bacterial Pathogens.

The Journal of Biological Chemistry, 290(31), 18954.

Read Review

Zhang, Y., Zhou, J., Dong, Z., Li, G., Wang, J., Li, Y., Wan, D., Yang, H., & Yin, Y. (2019).

Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets.

Frontiers in Microbiology, 10, 484922.

Read Review

Zhang, Y., Zhou, J., Dong, Z., Li, G., Wang, J., Li, Y., Wan, D., Yang, H., & Yin, Y. (2019).

Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets.

Frontiers in Microbiology, 10, 484922.

Read Review

Giambò, F., Italia, S., Teodoro, M., Briguglio, G., Furnari, N., Catanoso, R. ... Fenga, C. (2021).

Influence of toxic metal exposure on the gut microbiota (Review).

World Academy of Sciences Journal, 3, 19.

Read Review

Djoko, K. Y., Ong, Y., Walker, M. J., & McEwan, A. G. (2015).

The Role of Copper and Zinc Toxicity in Innate Immune Defense against Bacterial Pathogens.

The Journal of Biological Chemistry, 290(31), 18954.

Read Review

Zhang, Y., Zhou, J., Dong, Z., Li, G., Wang, J., Li, Y., Wan, D., Yang, H., & Yin, Y. (2019).

Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets.

Frontiers in Microbiology, 10, 484922.

Read Review

Yin, Y., Gu, J., Wang, X., Song, W., Zhang, K., Sun, W., Zhang, X., Zhang, Y., & Li, H. (2017).

Effects of Copper Addition on Copper Resistance, Antibiotic Resistance Genes, and intl1 during Swine Manure Composting.

Frontiers in Microbiology, 8, 344.

Read Review

Yin, Y., Gu, J., Wang, X., Song, W., Zhang, K., Sun, W., Zhang, X., Zhang, Y., & Li, H. (2017).

Effects of Copper Addition on Copper Resistance, Antibiotic Resistance Genes, and intl1 during Swine Manure Composting.

Frontiers in Microbiology, 8, 344.

Read Review

Zhang, Y., Zhou, J., Dong, Z., Li, G., Wang, J., Li, Y., Wan, D., Yang, H., & Yin, Y. (2019).

Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets.

Frontiers in Microbiology, 10, 484922.

Read Review

Zhang, Y., Zhou, J., Dong, Z., Li, G., Wang, J., Li, Y., Wan, D., Yang, H., & Yin, Y. (2019).

Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets.

Frontiers in Microbiology, 10, 484922.

Read Review

Arendsen, L. P., Thakar, R., & Sultan, A. H. (2019).

The Use of Copper as an Antimicrobial Agent in Health Care, Including Obstetrics and Gynecology.

Clinical Microbiology Reviews, 32(4), e00125-18.

Yin, Y., Gu, J., Wang, X., Song, W., Zhang, K., Sun, W., Zhang, X., Zhang, Y., & Li, H. (2017).

Effects of Copper Addition on Copper Resistance, Antibiotic Resistance Genes, and intl1 during Swine Manure Composting.

Frontiers in Microbiology, 8, 344.

Read Review

Chillon, T. S., Tuchtenhagen, M., Schwarz, M., Hackler, J., Heller, R., Kaghazian, P., Moghaddam, A., Schomburg, L., Haase, H., Kipp, A. P., Schwerdtle, T., & Maares, M. (2024).

Determination of copper status by five biomarkers in serum of healthy women.

Journal of Trace Elements in Medicine and Biology, 84, 127441.

Jafari Z, Spry C; Authors.

Copper and Ceruloplasmin Tests for Children With Global Developmental Delay and Intellectual Disability

Rapid Review [Internet]. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health; 2023 Jan.

Culpepper, T., & Kelkar, A. H. (2021).

Undiagnosed Wilson’s Disease and Fibromyalgia Masking Bowel Perforation.

Cureus, 13(2), e13504.

Read Review

Wilschefski, S. C., & Baxter, M. R. (2019).

Inductively Coupled Plasma Mass Spectrometry: Introduction to Analytical Aspects.

The Clinical Biochemist Reviews, 40(3), 115.

Xing C, Chen J, Zheng X, Chen L, Chen M, Wang L, Li X.

Functional metagenomic exploration identifies novel prokaryotic copper resistance genes from the soil microbiome.

Metallomics. 2020 Mar 1;12(3):387-395.

Culpepper, T., & Kelkar, A. H. (2021).

Undiagnosed Wilson’s Disease and Fibromyalgia Masking Bowel Perforation.

Cureus, 13(2), e13504.

Read Review

Zhang, Y., Zhou, J., Dong, Z., Li, G., Wang, J., Li, Y., Wan, D., Yang, H., & Yin, Y. (2019).

Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets.

Frontiers in Microbiology, 10, 484922.

Read Review

Zhang, Y., Zhou, J., Dong, Z., Li, G., Wang, J., Li, Y., Wan, D., Yang, H., & Yin, Y. (2019).

Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets.

Frontiers in Microbiology, 10, 484922.

Read Review

Lopez MJ, Royer A, Shah NJ.

Biochemistry, Ceruloplasmin. [Updated 2023 Feb 24].

In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from:

Djoko, K. Y., Ong, Y., Walker, M. J., & McEwan, A. G. (2015).

The Role of Copper and Zinc Toxicity in Innate Immune Defense against Bacterial Pathogens.

The Journal of Biological Chemistry, 290(31), 18954.

Read Review

Djoko, K. Y., Ong, Y., Walker, M. J., & McEwan, A. G. (2015).

The Role of Copper and Zinc Toxicity in Innate Immune Defense against Bacterial Pathogens.

The Journal of Biological Chemistry, 290(31), 18954.

Read Review

Borkow, G., Roth, T., & Kalinkovich, A. (2022).

Wide Spectrum Potent Antimicrobial Efficacy of Wound Dressings Impregnated with Cuprous Oxide Microparticles.

Microbiology Research, 13(3), 366-376.

Read Review

Hyre, A. N., Kavanagh, K., Kock, N. D., Donati, G. L., & Subashchandrabose, S. (2017).

Copper Is a Host Effector Mobilized to Urine during Urinary Tract Infection To Impair Bacterial Colonization.

Infection and Immunity, 85(3), e01041-16.

Ma, J., Xie, Y., Zhou, Y., Wang, D., Cao, L., Zhou, M., Wang, X., Wang, B., & Chen, W. (2020).

Urinary copper, systemic inflammation, and blood lipid profiles: Wuhan-Zhuhai cohort study.

Environmental Pollution, 267, 115647.

Steunou, A. S., Bourbon, L., Babot, M., Durand, A., Liotenberg, S., Yamaichi, Y., & Ouchane, S. (2020).

Increasing the copper sensitivity of microorganisms by restricting iron supply, a strategy for bio‐management practices.

Microbial Biotechnology, 13(5), 1530.

Read Review

Baldari, S., Rocco, G. D., & Toietta, G. (2020).

Current Biomedical Use of Copper Chelation Therapy.

International Journal of Molecular Sciences, 21(3), 1069.

Read Review

Maywald, M., & Rink, L. (2022).

Zinc in Human Health and Infectious Diseases.

Biomolecules, 12(12), 1748.

Read Review

Davoodian, T., & L Johnson, M. D. (2023).

The Promise of Copper Ionophores as Antimicrobials.

Current Opinion in Microbiology, 75, 102355.

Read Review

Dalecki, A. G., Haeili, M., Shah, S., Speer, A., Niederweis, M., Kutsch, O., & Wolschendorf, F. (2015).

Disulfiram and Copper Ions Kill Mycobacterium tuberculosis in a Synergistic Manner.

Antimicrobial Agents and Chemotherapy, 59(8), 4835.

Read Review

Tian, F., Xiao, Y., Li, X., Zhai, Q., Wang, G., Zhang, Q., Zhang, H., & Chen, W. (2015).

Protective Effects of Lactobacillus plantarum CCFM8246 against Copper Toxicity in Mice.

PLoS ONE, 10(11), e0143318.

Read Review

Baldari, S., Rocco, G. D., & Toietta, G. (2020).

Current Biomedical Use of Copper Chelation Therapy.

International Journal of Molecular Sciences, 21(3), 1069.

Read Review

Maywald, M., & Rink, L. (2022).

Zinc in Human Health and Infectious Diseases.

Biomolecules, 12(12), 1748.

Read Review

Dalecki, A. G., Haeili, M., Shah, S., Speer, A., Niederweis, M., Kutsch, O., & Wolschendorf, F. (2015).

Disulfiram and Copper Ions Kill Mycobacterium tuberculosis in a Synergistic Manner.

Antimicrobial Agents and Chemotherapy, 59(8), 4835.

Read Review

Davoodian, T., & L Johnson, M. D. (2023).

The Promise of Copper Ionophores as Antimicrobials.

Current Opinion in Microbiology, 75, 102355.

Read Review

Giri, S. S., Kim, H. J., Jung, W. J., Bin Lee, S., Joo, S. J., Gupta, S. K., & Park, S. C. (2024).

Probiotics in addressing heavy metal toxicities in fish farming: Current progress and perspective.

Ecotoxicology and Environmental Safety, 282, 116755.

Read Review

Tian, F., Xiao, Y., Li, X., Zhai, Q., Wang, G., Zhang, Q., Zhang, H., & Chen, W. (2015).

Protective Effects of Lactobacillus plantarum CCFM8246 against Copper Toxicity in Mice.

PLoS ONE, 10(11), e0143318.

Read Review
Join the Roundtable

Contribute to published consensus reports, connect with top clinicians and researchers, and receive exclusive invitations to roundtable conferences.