Research Feeds

View All
Characterizing the gut microbiota in females with infertility and preliminary results of a water-soluble dietary fiber intervention study A prebiotic dietary pilot intervention restores faecal metabolites and may be neuroprotective in Parkinson’s Disease Diagnosis of the menopause: NICE guidance and quality standards Causes of Death in End-Stage Kidney Disease: Comparison Between the United States Renal Data System and a Large Integrated Health Care System Factors affecting the absorption and excretion of lead in the rat Factors associated with age at menarche, menstrual knowledge, and hygiene practices among schoolgirls in Sharjah, UAE Cadmium transport in blood serum The non-pathogenic Escherichia coli strain Nissle 1917 – features of a versatile probiotic Structured Exercise Benefits in Euthyroid Graves’ Disease: Improved Capacity, Fatigue, and Relapse Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease A Pilot Microbiota Study in Parkinson’s Disease Patients versus Control Subjects, and Effects of FTY720 and FTY720-Mitoxy Therapies in Parkinsonian and Multiple System Atrophy Mouse Models Dysbiosis of the Saliva Microbiome in Patients With Polycystic Ovary Syndrome Integrated Microbiome and Host Transcriptome Profiles Link Parkinson’s Disease to Blautia Genus: Evidence From Feces, Blood, and Brain Gut microbiota modulation: a narrative review on a novel strategy for prevention and alleviation of ovarian aging Long-term postmenopausal hormone therapy and endometrial cancer

The role of key gut microbial metabolites in the development and treatment of cancer Original paper

Researched by:

  • Divine Aleru ID
    Divine Aleru

    User avatarI am a biochemist with a deep curiosity for the human microbiome and how it shapes human health, and I enjoy making microbiome science more accessible through research and writing. With 2 years experience in microbiome research, I have curated microbiome studies, analyzed microbial signatures, and now focus on interventions as a Microbiome Signatures and Interventions Research Coordinator.

    Read More

November 15, 2025

  • Microbes
    Microbes

    Microbes, short for microorganisms, are tiny living organisms that are ubiquitous in the environment, including on and inside the human body. They play a crucial role in human health and disease, functioning within complex ecosystems in various parts of the body, such as the skin, mouth, gut, and respiratory tract. The human microbiome, which is […]

  • Short-chain Fatty Acids (SCFAs)
    Short-chain Fatty Acids (SCFAs)

    Short-chain fatty acids are microbially derived metabolites that regulate epithelial integrity, immune signaling, and microbial ecology. Their production patterns and mechanistic roles provide essential functional markers within microbiome signatures and support the interpretation of MBTIs, MMAs, and systems-level microbial shifts across clinical conditions.

Researched by:

  • Divine Aleru ID
    Divine Aleru

    User avatarI am a biochemist with a deep curiosity for the human microbiome and how it shapes human health, and I enjoy making microbiome science more accessible through research and writing. With 2 years experience in microbiome research, I have curated microbiome studies, analyzed microbial signatures, and now focus on interventions as a Microbiome Signatures and Interventions Research Coordinator.

    Read More

Last Updated: 2025-08-19

Microbiome Signatures identifies and validates condition-specific microbiome shifts and interventions to accelerate clinical translation. Our multidisciplinary team supports clinicians, researchers, and innovators in turning microbiome science into actionable medicine.

Divine Aleru

I am a biochemist with a deep curiosity for the human microbiome and how it shapes human health, and I enjoy making microbiome science more accessible through research and writing. With 2 years experience in microbiome research, I have curated microbiome studies, analyzed microbial signatures, and now focus on interventions as a Microbiome Signatures and Interventions Research Coordinator.

What was studied?

The review focuses on the role of gut microbial metabolites in cancer development and treatment. It highlights the complex interaction between gut microbiota, their metabolites, and the host’s immune system, emphasizing how these metabolites can both inhibit and promote carcinogenesis. Specific metabolites such as short-chain fatty acids (SCFAs), bacteriocins, and phenylpropanoid-derived compounds were explored for their potential anticancer activities. The review also discusses pro-carcinogenic metabolites like secondary bile acids, which can contribute to cancer progression through mechanisms such as inflammation and oxidative stress.

Who was studied?

The review examines existing studies, including in vitro and in vivo research on the effects of gut microbial metabolites on various cancers, including colorectal, breast, liver, and head and neck cancers. It evaluates the impacts of dietary patterns and microbiota composition on cancer risk and progression. The studies investigated range from clinical observations to animal models, focusing on the effects of microbial fermentation products like SCFAs and secondary bile acids on tumor growth, immune modulation, and inflammation.

Most important findings

Gut microbial metabolites, particularly SCFAs like butyrate, exhibit anticancer properties by promoting apoptosis, inhibiting cell proliferation, and modulating immune responses. However, metabolites like secondary bile acids can promote carcinogenesis by increasing oxidative stress and inflammation. The balance between these metabolites plays a crucial role in cancer risk, especially in colorectal cancer (CRC). Diets high in protein and fat can favor the production of harmful metabolites, whereas diets rich in fiber support the production of beneficial SCFAs, reducing cancer risk. Additionally, bacteriocins, antimicrobial peptides produced by certain gut bacteria, showed cytotoxic effects against cancer cells, suggesting their potential as novel therapeutic agents.

Key implications

This review underscores the importance of gut microbial metabolites in cancer prevention and therapy. While SCFAs and bacteriocins offer promise as therapeutic agents, the pro-carcinogenic effects of secondary bile acids highlight the need for further research on how to balance these metabolites for optimal health outcomes. The integration of diet-based interventions and microbiota modulation could become a key strategy in cancer prevention and treatment, especially when combined with traditional therapies. Future clinical studies are required to refine these approaches and develop more targeted cancer treatments that harness the microbiome’s potential.

Short-chain Fatty Acids (SCFAs)

Short-chain fatty acids are microbially derived metabolites that regulate epithelial integrity, immune signaling, and microbial ecology. Their production patterns and mechanistic roles provide essential functional markers within microbiome signatures and support the interpretation of MBTIs, MMAs, and systems-level microbial shifts across clinical conditions.

Short-chain Fatty Acids (SCFAs)

Short-chain fatty acids are microbially derived metabolites that regulate epithelial integrity, immune signaling, and microbial ecology. Their production patterns and mechanistic roles provide essential functional markers within microbiome signatures and support the interpretation of MBTIs, MMAs, and systems-level microbial shifts across clinical conditions.

Short-chain Fatty Acids (SCFAs)

Short-chain fatty acids are microbially derived metabolites that regulate epithelial integrity, immune signaling, and microbial ecology. Their production patterns and mechanistic roles provide essential functional markers within microbiome signatures and support the interpretation of MBTIs, MMAs, and systems-level microbial shifts across clinical conditions.

Short-chain Fatty Acids (SCFAs)

Short-chain fatty acids are microbially derived metabolites that regulate epithelial integrity, immune signaling, and microbial ecology. Their production patterns and mechanistic roles provide essential functional markers within microbiome signatures and support the interpretation of MBTIs, MMAs, and systems-level microbial shifts across clinical conditions.

Join the Roundtable

Contribute to published consensus reports, connect with top clinicians and researchers, and receive exclusive invitations to roundtable conferences.