Microbial Metallomics
Microbial Metallomics is the study of how microorganisms interact with metal ions in biological systems, particularly within the human microbiome.
-
Karen Pendergrass
Karen Pendergrass is a microbiome researcher specializing in microbiome-targeted interventions (MBTIs). She systematically analyzes scientific literature to identify microbial patterns, develop hypotheses, and validate interventions. As the founder of the Microbiome Signatures Database, she bridges microbiome research with clinical practice. In 2012, based on her own investigative research, she became the first documented case of FMT for Celiac Disease—four years before the first published case study.
Microbiome Signatures identifies and validates condition-specific microbiome shifts and interventions to accelerate clinical translation. Our multidisciplinary team supports clinicians, researchers, and innovators in turning microbiome science into actionable medicine.
Karen Pendergrass is a microbiome researcher specializing in microbiome-targeted interventions (MBTIs). She systematically analyzes scientific literature to identify microbial patterns, develop hypotheses, and validate interventions. As the founder of the Microbiome Signatures Database, she bridges microbiome research with clinical practice. In 2012, based on her own investigative research, she became the first documented case of FMT for Celiac Disease—four years before the first published case study.
Overview
Microbial Metallomics is the study of how microorganisms interact with metal ions in biological systems, particularly within the human microbiome. This field examines the role of metals as cofactors in microbial metabolism, virulence, and competitive survival strategies, as well as how microbial communities influence metal bioavailability, sequestration, and toxicity. By integrating microbiology, biochemistry, and bioinorganic chemistry, Microbial Metallomics provides insights into microbial metal homeostasis, host-pathogen interactions, and the impact of metal disturbances on health and disease.
Research Feed
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Create a free account to unlock this study summary.
Did you know?
Metallomic signatures can reveal hidden drivers of disease by mapping how trace metals like nickel, iron, and cadmium shape microbial behavior and immune responses. These signatures not only help identify toxic exposures but also spotlight metal-dependent pathogens, offering new targets for precision-guided therapies.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Create a free account to unlock this study summary.
A metallomic signature is the condition-specific profile of trace metals and metal-binding molecules that reflects disrupted metal homeostasis.