Arsenic is a toxic metalloid that significantly impacts human health through its interaction with the microbiome. Chronic exposure, primarily through contaminated water, alters microbial communities in the gut, leading to dysbiosis, enhanced antimicrobial resistance, and compromised gut barrier function. Arsenic’s effects extend beyond the gut, influencing systemic health and increasing the risk of neurological and cardiovascular diseases. Microbiome-based therapeutics (MBTIs) offer promising adjuncts to traditional arsenic detoxification strategies, helping mitigate its toxic effects and improve overall health outcomes.
Arsenic (As)
Arsenic can disrupt both human health and microbial ecosystems. Its impact on the gut microbiome can lead to dysbiosis, which has been linked to increased disease susceptibility and antimicrobial resistance. Arsenic’s ability to interfere with cellular processes, especially through its interaction with essential metals like phosphate and zinc, exacerbates these effects. By understanding how arsenic affects microbial communities and how these interactions contribute to disease, we can develop more effective interventions, including microbiome-targeted therapies and nutritional strategies, to mitigate its harmful effects.
-
Divine Aleru
I am a biochemist with a deep curiosity for the human microbiome and how it shapes human health, and I enjoy making microbiome science more accessible through research and writing. With 2 years experience in microbiome research, I have curated microbiome studies, analyzed microbial signatures, and now focus on interventions as a Microbiome Signatures and Interventions Research Coordinator.
Microbiome Signatures identifies and validates condition-specific microbiome shifts and interventions to accelerate clinical translation. Our multidisciplinary team supports clinicians, researchers, and innovators in turning microbiome science into actionable medicine.
Divine Aleru
I am a biochemist with a deep curiosity for the human microbiome and how it shapes human health, and I enjoy making microbiome science more accessible through research and writing. With 2 years experience in microbiome research, I have curated microbiome studies, analyzed microbial signatures, and now focus on interventions as a Microbiome Signatures and Interventions Research Coordinator.
Overview
Arsenic is a metalloid toxin that shapes microbial pathogenesis by altering gut microbiota composition and function and by exerting selective pressure for metal-resistant organisms. Chronic ingestion of contaminated water and food leads to variable disease outcomes, partly attributable to differences in the microbiome.[1][2] The principal host niches for arsenic–microbe interaction are the gastrointestinal tract (where arsenicals contact a dense microbial community), reducing the abundance of commensals such as Bifidobacterium and butyrate-producing Firmicutes.[3] These changes not only diminish barrier-protective metabolites but also select for multidrug-resistant organisms, thereby increasing the risk of difficult-to-treat infections.[4][5] Another host niche is the systemic circulation (where arsenic can modulate immune cells).[6] The most actionable leverage point is exposure mitigation coupled with emerging microbiome-targeted interventions that reduce arsenic absorption.[7] This dual strategy can prevent arsenic-driven dysbiosis and downstream pathologies.
Chemical speciation across host niches
In oxygenated, acidic gastric fluid, arsenic exists mainly as pentavalent arsenate (As(V)) oxyanions (H₂AsO₄⁻/HAsO₄²⁻).[8] A shift to mildly reducing conditions (as in the anaerobic colon) favors the formation of trivalent arsenite (As(III)) as uncharged arsenous acid (H₃AsO₃).[9] This redox-dependent speciation governs bioavailability: arsenate, being an analog of phosphate, requires transporters for uptake, whereas arsenite (more mobile) can pass via aquaglyceroporins.[10] For example, in the neutral small intestine As(V) competes with phosphate for the Pst/Pit uptake systems, but As(III) readily permeates through glycerol channels like GlpF.[11] Gut bacteria further alter arsenic speciation by methylation and thiolation, generating monomethylarsonous acid (MMA(III)), dimethylarsinic acid (DMA(V)), and thioarsenicals, which can increase toxicity or volatility.[12] These transformations change which importers or detox pathways are engaged and thus arsenic’s distribution across host niches.
Microbial acquisition, regulation, and buffering
Microbes acquire arsenic through phosphate transporters for arsenate (As(V)) and aquaglyceroporins for arsenite (As(III)), which mimics glycerol.[13] Once inside, arsenic triggers a regulatory cascade via the ArsR repressor family, activating the ars operon.[14] This operon encodes enzymes like arsenate reductase (ArsC), which converts As(V) to the more toxic As(III), and efflux pumps (e.g. ArsB and Acr3) that expel arsenite from the cell. Some bacteria also have metallochaperones like ArsD that transfer As(III) to efflux pumps, enhancing arsenic detoxification.[15][16] These import, regulation, and efflux mechanisms act in concert to detoxify arsenic, allowing microbes to survive in arsenic-rich environments, albeit with a metabolic burden.
Metal toolkit
System/role | Representative components |
---|---|
Importer | Arsenic has no dedicated arsenic importer; arsenate enters via phosphate transporters (Pst/Pit), and As(III) permeates through aquaglyceroporins[17][18] |
Regulator | ArsR (ArsR/SmtB family) repressor, As(III)-responsive; For example, the arsR in E. coli R773 derepresses operon genes upon binding As(III).[19] |
Chaperone | ArsD metallochaperone (in some bacteria) binds As(III) and delivers it to ArsA ATPase, enhancing arsenite efflux.[20][21] |
Efflux | ArsB permease (arsenite/H+ antiporter) often partnered with ArsA ATPase (e.g. in E. coli R773) pumps As(III) out; Acr3 transporter serves similar efflux role in many Gram-positives.[22] |
Nutritional immunity and host sequestration
Although arsenic is not needed for microbial nutrition, the host still limits its bioavailability to protect itself and the microbiota. Host proteins bind and compartmentalize arsenic, effectively sequestering it in less reactive forms.[23] For instance, metallothioneins, which are highly activated in the presence of arsenic, have a strong affinity for As(III), effectively reducing the amount of free arsenic that could interfere with microbial enzymes.[24][25] Arsenic in blood partitions predominantly into red blood cells (90–99%), where it binds to hemoglobin at cysteine residues.[26] This RBC binding traps arsenic in a less toxic, protein-bound state and limits exposure to peripheral tissues and pathogens.[27] Similarly, serum albumin binds to arsenic trioxide and arsenate, preventing dangerous spikes of free arsenic in circulation.[28] The blood–brain barrier further prevents arsenic from entering the central nervous system, guarding that niche from arsenic’s effects. By sequestering arsenic in these ways, the host’s “nutritional immunity” inadvertently shields microbes as well – preventing arsenic from widely killing commensals or invading pathogens, but also denying pathogens any possible benefit from arsenic.
Host sequestration map
Host Factor | Microbial Consequence for Metal-Dependent Enzymes or Growth |
---|---|
Metallothionein (MT) | MT binds As(III) via numerous thiols, forming inert complexes.[29] This prevents arsenic from interacting with microbial enzymes, thereby protecting both host and commensal bacterial metalloproteins from arsenic inhibition.[30] |
Hemoglobin | Arsenic (As(III)) avidly binds to hemoglobin, especially rat and human Hb cysteine thiols.[31] This locks arsenic inside red cells, lowering free plasma arsenic and indirectly shielding blood-borne microbes from arsenic stress.[32] |
Metallophores and community competition
Metals often drive microbial competition via chelators, but arsenic’s role is unique: some microbes use arsenic compounds as chemical weapons rather than nutrients. Certain bacteria secrete or generate arsenicals that reshape the local microbial community. For example, soil and gut bacteria with the arsM gene enzymatically methylate arsenite to produce monomethylarsonous acid (MAs(III)), a highly toxic organoarsenical with antibiotic-like properties.[33] This secreted MAs(III) can inhibit neighboring microbes, giving the producer a competitive edge in arsenic-rich niches. In response, other bacteria have evolved capture and detox systems for these arsenicals. For example, some carry ArsI (an C–As bond lyase) to degrade MAs(III) or ArsH enzymes to oxidize it to less toxic pentavalent forms.[34] Host factors during inflammation may also influence arsenic competition – for instance, host neutrophils releasing reactive oxygen and sulfur species could convert arsenite to less available forms or precipitate it with H₂S, indirectly benefiting arsenic-sensitive commensals.[35][36]
Metallophores and capture
Metallophore or ligand complex | Capture system and ecological effect |
---|---|
Monomethylarsenite (MAs(III)) | Produced by arsenic-methylating bacteria (via ArsM) and released into the environment.[37] MAs(III) poisons competing microbes, effectively shrinking community diversity to favor MAs-producing strains. Competitors must carry MAs(III) resistance (e.g. ArsI enzyme or ArsP efflux) or be eliminated. |
Arsenic-sulfide precipitate (As₂S₃) | Forms when sulfide-producing microbes (e.g. some Desulfovibrio spp.) release H₂S that reacts with As(III).[38] This precipitate immobilizes arsenic, reducing soluble arsenic available to arsenic-respiring or arsenic-requiring organisms (if any), and protects the community from arsenic toxicity.[39] |
Mismetallation and cross-metal crosstalk
When arsenic levels rise relative to essential nutrients, enzymes can misbind arsenic in place of the correct metals or substrates, leading to malfunctions.[40] For example, arsenate (As(V)) competes with phosphate in many biochemical reactions; it can mistakenly substitute for phosphate in kinases and ATP synthesis. This “wrong-metal” incorporation yields unstable ADP–arsenate instead of ATP, causing rapid hydrolysis of high-energy bonds and effectively uncoupling oxidative phosphorylation.[41] Likewise, arsenite (As(III)) binds to vicinal sulfhydryl groups in proteins – notably the lipoic acid cofactor of pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase – thereby inactivating these key metabolic enzymes.[42] This toxic impact of arsenic raises the concentration of pyruvate in the blood, lowers energy generation, and eventually destroys the cells.[43] The result is inhibition of the TCA cycle and a shift to anaerobic metabolism. Arsenic can also perturb regulatory metals: it interacts with zinc-binding sites in transcription factors, such as the zinc-finger domains of GATA-1, displacing Zn and causing loss of DNA-binding activity.[44] These mismetallation effects explain some arsenic toxicities and inform combination strategies, for instance, ensuring adequate dietary phosphate and zinc may reduce arsenic’s ability to hijack those sites, and using thiol-chelating drugs can preferentially bind arsenite to protect enzyme thiols.
Mismetallation map
At-risk enzyme class | Likely wrong-metal outcome |
---|---|
Pyruvate dehydrogenase complex | Arsenite binds to the di-thiol (–SH) of lipoic acid in E_1 and E_2 subunits, blocking acetyl-CoA production.[45] This disrupts the energy-producing processes and leads to a decrease in the energy level in cells, and an increase in ROS production. |
ATP-generating enzymes | Arsenate replaces phosphate in substrate-level phosphorylation and in mitochondrial ATP synthase steps.[46] The resultant ADP-arsenate is unstable and hydrolyzes, wasting energy. Clinically this “arsenolysis” explains how arsenate inhibits ATP production and can kill or stunt both human cells and microbes.[47][48] |
Zinc-finger transcription factors | As(III) coordinates with the cysteine residues in Zn-finger motifs, displacing Zn and causing the protein to misfold or release DNA.[49] |
Virulence pathway mapping
Arsenic exposure can modulate pathogen virulence and host susceptibility pathways. In Helicobacter pylori infection, co-exposure to arsenic dramatically intensifies gastric injury: arsenic supports a heightened inflammatory response that drives tight-junction loss and epithelial barrier disruption[50]. This synergy translates to more severe gastritis and ulceration than H. pylori alone.[51] Enteric pathogens carrying arsenic-resistance genes have a fitness advantage in arsenic-rich hosts. In Yersinia spp., an ars operon on a virulence plasmid was associated with survival inside macrophages, presumably by detoxifying arsenic that immune cells might unleash.[52] Disabling such resistance (e.g. via ArsC or ArsB inhibitors) could make these pathogens more susceptible to host arsenic stress and reduce their persistence.
Virulence targets to MBTIs
Targetable node | MBTI concept with predicted effect on pathogenesis |
---|---|
Gastric epithelial tight junctions (damaged by H. pylori+As) | Probiotic therapy (e.g. Lactobacillus rhamnosus GG) to strengthen mucous layer and tight junction proteins.[53] Predicted effect: Mitigates arsenic-aggravated junction loss, maintaining barrier integrity and reducing H. pylori infiltration and ulcer risk.[54][55] |
Exposure to microbiome outcomes
At real-world exposure levels, distinctive microbiome alterations emerge. At low-level chronic exposure (e.g. drinking water ~10–50 μg As/L), human studies report subtle but measurable shifts: infants with moderate arsenic in urine had enrichment of certain Firmicutes and depletion of beneficial genera like Bifidobacterium, while adults show decreased gut alpha-diversity and early metabolic disturbances in stool.[56] At higher exposures (100+ μg/L), more pronounced dysbiosis occurs: long-term arsenic-exposed populations exhibit significantly reduced microbial diversity and a community profile skewed toward arsenic-tolerant taxa. For instance, arsenic-volatilizing bacteria such as Desulfovibrio and opportunists like certain Bacillus spp. become overrepresented, whereas commensal Bacteroides and butyrate-producing species decline.[57] Mouse models mirror these findings, showing perturbed microbial metabolism and barrier function at doses equivalent to human environmental exposure. The most consistent signal across studies is a loss of beneficial anaerobes (e.g., SCFA-producers) and an expansion of arsenic-resistance gene carriers in the gut microbiome of arsenic-exposed hosts.[58] These changes correlate with functional consequences such as increased intestinal permeability and systemic inflammation.
Exposure thresholds to selection signals
Exposure or concentration range | Observed or predicted microbiome selection signal |
---|---|
<10 μg L⁻¹ (baseline in drinking water) | No immediate microbiome disruption, but long-term exposure to low-level arsenic in drinking water may contribute to the development of diabetes and cancers.[59][60] |
10–50 μg L⁻¹ (low chronic exposure) | Early shifts: slight decrease in diversity and evenness. Enrichment of a few arsenic-tolerant gut bacteria; mild depletion of Bifidobacterium and Bacteroides (observed in infants at ~15 μg L⁻¹).[61] |
50–100 μg L⁻¹ (moderate exposure) | Clear dysbiosis patterns: ≥20% drop in α-diversity in some studies.[62] Expansion of Proteobacteria and sulfate-reducers that can transform arsenic, reduction in obligate anaerobes like Firmicutes.[63] |
Antimicrobial resistance co-selection
Chronic arsenic exposure in the environment exerts a selection pressure that co-selects for antimicrobial resistance (AMR) in microbiomes. Long-term arsenic in drinking water has been linked to higher carriage of multidrug-resistant gut bacteria in human populations. Study revealed that children consuming high-arsenic well water (>100 μg/L) showed significantly higher prevalence of arsenic-resistant Escherichia coli that were concurrently resistant to multiple antibiotics, including third-generation cephalosporins and fluoroquinolones, compared to children in low-arsenic areas.[64] The mechanism involves co-location of ars operons with antibiotic resistance genes on plasmids and transposons – exposure to arsenic selects for bacteria harboring these genetic elements, and those elements often carry AMR determinants as well. Moreover, arsenic can induce global stress responses (e.g. efflux pumps, oxidative stress regulons) that also reduce antibiotic susceptibility. This co-selection persists even after arsenic exposure decreases: once multi-resistant, bacteria remain in the community and can spread their plasmids.
Assays and decision use
Measuring arsenic exposure and its microbiome impact is important for clinical decision-making. Each assay has interpretation nuances. Arsenic levels in blood, urine, hair, and nails have all been used to indicate exposure. Among these, urine, hair, and nails are the most frequently used biomarkers for detecting, measuring, and tracking arsenic exposure.[65] Urinary arsenic is now regarded as a more reliable and preferable biomarker for monitoring recent exposure compared to blood, as most absorbed arsenic is excreted through urine, which is also easier to collect.[66] Arsenic in nails serves as a valuable marker for assessing past exposure and is less susceptible to external contamination than hair.[67] High hair arsenic indicates chronic exposure, even if the current urine is low.[68][69] By combining these assays, clinicians and researchers can make informed decisions: when to initiate chelation, whether to advise microbiome-supportive therapy (like probiotics or prebiotics), and how aggressively to pursue environmental remediation.
Assays to decision use
Assay and specimen | Decision use |
---|---|
Urine arsenic (ICP-MS speciation) | This is the gold standard for exposure assessment. Guides clinical action. If inorganic arsenic (As) levels exceed 50 μg/L or a rising trend is observed, implement exposure reduction measures (changing the water source or initiating chelation).[70] |
Drinking water arsenic (Coupled chromatography, mass spectometry, field kit or HG-AAS) | WHO’s provisional arsenic limit is 10 µg/L. Speciation—best measured with coupled chromatography plus optical or mass spectrometry—guides treatment choice.[71] Leading removals are absorption, precipitation, membrane, and hybrid membrane processes.[72] |
Hair or nail arsenic (ICP-MS, HPLC, LIBS and XRF spectrometry) | Hair Arsenic >1 mg/kg strongly suggests prolonged high exposure.[73] Immediate medical and environmental measures are required to address the high-level exposure. |
Stool microbiome sequencing (16S/metagenomics on feces) | Research/adjunct tool to detect arsenic-induced dysbiosis or resistance gene enrichment.[74] It reveals how arsenic exposure alters the gut’s microbial community and its metabolic functions, indicating potential mechanisms of toxicity or contributing to disease development.[75] |
Fecal arsenic content (dry weight ICP-MS) | Investigational assay measuring how much arsenic passes unabsorbed.[76] Could inform if an oral adsorbent (like a GI binding agent) is working. It is rarely used clinically, mainly in toxicology studies.[77] |
Body-site biogeography
Arsenic’s interaction with host and microbiota varies by body site, which has clinical implications for monitoring.[78] The major microbiome impact zones are the GI tract (stomach and colon) and, indirectly, systemic compartments affecting immunity.[79][80] Monitoring should focus on GI symptoms and using site-specific biomarkers to catch arsenic’s impact early.[81] For example, urine arsenic for systemic exposure, and stool tests for gut effect.[82]
Site to interaction of interest
Body site | Dominant metal–microbe interaction |
---|---|
Saliva (Oral cavity) | Arsenic in saliva is low compared to the other body sites.[83] Oral microbes are not significantly affected by arsenic alone. |
Gastric lumen | Arsenic plus H. pylori causes synergistic mucosal damage – increased gastric inflammation and microbiota shifts (loss of some lactobacilli).[84][85] |
Small intestine | Arsenic is absorbed in the small intestine, which can injure enterocytes and alter small bowel microbiota subtly.[86][87] Possibly reduced nutrient absorption and dysbiosis if exposure is high. |
Colon | Key site of arsenic–microbe interaction. Arsenic that reaches the colon is transformed by gut bacteria, selecting for arsenic-resistant species and decreasing beneficial ones.[88][89] Often manifests as dysbiosis and possibly irritable bowel or inflammatory symptoms. |
Blood (systemic) | Arsenic binds to RBCs and proteins, so free arsenic is low; no native blood microbiota to affect.[90] Indirectly, arsenic can suppress immune cell function, which might increase infection susceptibility.[91][92] |
Urine (urinary tract) | Urine carries excreted arsenic. Generally sterile, but if chronic exposure, any colonizing bacteria (e.g. in recurrent UTIs) might be arsenic-resistant.[93] |
Biliary tract (liver/gallbladder) | Arsenic is partly excreted in bile. Potentially could alter biliary microbiota or precipitate with bile components.[94] Not clearly established. |
MBTIs and clinical strategies
Microbiome-targeted interventions (MBTIs) can complement traditional arsenic detoxification. Probiotics, such as Lactobacillus-containing yogurt, bind dietary arsenic in the gut and reduce absorption, protecting both host and microbiota.[95] Dietary modulation with prebiotic fibers supports commensals like Faecalibacterium and Bifidobacterium, enhancing intestinal barrier repair and promoting arsenic detoxification.[96] Cross-metal interventions by zinc or selenium supplementation can further protect gut enzymes and form excretable complexes with arsenic.[97] MBTIs are most effective when applied early, alongside exposure removal. Probiotics can be co-administered with chelation therapy to restore microbiome balance, but strains must tolerate arsenic to remain effective. Emerging approaches like fecal microbiota transplantation (FMT) remain experimental but may help in severe or refractory cases. Overall, the integrated clinical strategy is: remove/bind arsenic, restore gut microbiota, and support host nutrition, aiming to improve microbial diversity, reduce arsenic tissue burden, and mitigate dysbiosis-related pathology.
Intervention to expected microbial effect
Intervention | Expected microbial or host-niche effect |
---|---|
Probiotic yogurt (with Lactobacillus rhamnosus and others) | Binds arsenic in the gut and reduces its absorption, leading to lower systemic load and protecting gut microbiota from arsenic toxicity.[98] Often normalizes stool consistency and increases beneficial bacteria. |
Prebiotic fiber supplementation | Enriches commensals that fortify the gut barrier and possibly enhance arsenic methylation to less toxic forms.[99] Leads to increased SCFA production, which heals the intestinal lining.[100] |
Selenium and Zinc co-supplementation | Selenium forms stable complexes with arsenic (seleno-bis(arsenic-glutathione)), facilitating arsenic elimination.[101] Zinc supports antioxidant enzymes and competes with arsenic for binding sites, potentially reducing mismetallation in microbes and the host.[102][103] |
Chelation therapy | Directly binds arsenic in blood and tissues, lowering the pressure on the microbiome (less arsenic reaching gut mucosa).[104] Expected to gradually allow microbiome recovery as arsenic is cleared. |
Fecal Microbiota Transplant (FMT) | FMT replaces a dysbiotic, arsenic-altered microbiome with a healthy donor microbiome.[105] The new microbiota may not carry as many arsenic resistance genes, which could restore normal microbial metabolism and improve gut health. |
Knowledge gaps and priorities
Several uncertainties limit the translation of arsenic–microbiome science into clinical practice. The identity of gut microbes that actively methylate or reduce arsenic in vivo remains poorly defined, despite strong in vitro evidence. The durability of arsenic-induced dysbiosis is unclear: whether communities rebound after exposure removal, and on what time scale, has not been established. Intervention efficacy is uncertain. While small studies show probiotics and micronutrients can mitigate arsenic uptake, large-scale randomized trials are lacking. Priority directions include longitudinal cohort studies in exposed populations, linking arsenic speciation to microbiome changes and health outcomes; randomized probiotic or synbiotic trials measuring arsenic levels, microbial diversity, and barrier function; and mechanistic experiments using germ-free animals and gut simulators to map microbial pathways of arsenic metabolism. Improved analytical tools, such as isotopic tracing, will also be critical. Collectively, these efforts will clarify which microbes drive arsenic fate in the gut and guide microbiome-based interventions to protect vulnerable communities
Research Feed
Arsenic disturbs the gut microbiome of individuals in a disadvantaged community in Nepal
January 31, 2020
/
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Create a free account to unlock this study summary.
Microbiome Insiders can read two study summaries for any topic on Microbiome.
The Human Gut Microbiome’s Influence on Arsenic Toxicity
January 10, 2020
/
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Create a free account to unlock this study summary.
Microbiome Insiders can read two study summaries for any topic on Microbiome.
The gut microbiome is required for full protection against acute arsenic toxicity in mouse models
December 21, 2018
/
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Create a free account to unlock this study summary.
Microbiome Insiders can read two study summaries for any topic on Microbiome.
Distribution of Arsenic Resistance Genes in Prokaryotes
October 23, 2018
/
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Create a free account to unlock this study summary.
Microbiome Insiders can read two study summaries for any topic on Microbiome.
The Effect of the Combination of Probiotics and Heavy Metals From Various Aspects in Humans: A Systematic Review of Clinical Trial Studies
March 18, 2025
/
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Create a free account to unlock this study summary.
Microbiome Insiders can read two study summaries for any topic on Microbiome.
Introducing the ArsR-Regulated Arsenic Stimulon
March 3, 2021
/
Metals •
Metals
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Create a free account to unlock this study summary.
Microbiome Insiders can read two study summaries for any topic on Microbiome.
The ArsD As(III) metallochaperone
September 16, 2013
/
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Create a free account to unlock this study summary.
Microbiome Insiders can read two study summaries for any topic on Microbiome.
An arsenic metallochaperone for an arsenic detoxification pump
October 17, 2006
/
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Create a free account to unlock this study summary.
Microbiome Insiders can read two study summaries for any topic on Microbiome.
Arsenic Binding to Proteins
June 28, 2018
/
Metals •
Metals
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Create a free account to unlock this study summary.
Microbiome Insiders can read two study summaries for any topic on Microbiome.
Arsenic binding to human metallothionein-3
May 4, 2023
/
Metals •
Metals
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Create a free account to unlock this study summary.
Microbiome Insiders can read two study summaries for any topic on Microbiome.
Induction of Metallothionein I by Arsenic via Metal-activated Transcription Factor 1
May 8, 2009
/
Metals •
Metals
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Create a free account to unlock this study summary.
Microbiome Insiders can read two study summaries for any topic on Microbiome.
Influence of Sulfate Reduction on Arsenic Migration and Transformation in Groundwater Environment
March 17, 2022
/
Metals •
Metals
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Create a free account to unlock this study summary.
Microbiome Insiders can read two study summaries for any topic on Microbiome.
Arsenic toxicity: Sources, pathophysiology and mechanism
December 8, 2023
/
Metals •
Metals
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Create a free account to unlock this study summary.
Microbiome Insiders can read two study summaries for any topic on Microbiome.
Arsenate replacing phosphate – alternative life chemistries and ion promiscuity
February 22, 2012
/
Metals •
Metals
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Create a free account to unlock this study summary.
Microbiome Insiders can read two study summaries for any topic on Microbiome.
Inhibition of red blood cell development by arsenic-induced disruption of GATA-1
November 4, 2020
/
Metals •
Metals
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Create a free account to unlock this study summary.
Microbiome Insiders can read two study summaries for any topic on Microbiome.
How do intestinal probiotics restore the intestinal barrier?
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Create a free account to unlock this study summary.
Microbiome Insiders can read two study summaries for any topic on Microbiome.
Role of Probiotics in the Management of Helicobacter pylori
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Create a free account to unlock this study summary.
Microbiome Insiders can read two study summaries for any topic on Microbiome.
Sex-specific associations of infants’ gut microbiome with arsenic exposure in a US population
August 22, 2018
/
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Create a free account to unlock this study summary.
Microbiome Insiders can read two study summaries for any topic on Microbiome.
Effects of chronic exposure to arsenic on the fecal carriage of antibiotic-resistant Escherichia coli among people in rural Bangladesh
December 8, 2022
/
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Create a free account to unlock this study summary.
Microbiome Insiders can read two study summaries for any topic on Microbiome.
Long-Term Exposure to Low-Level Arsenic in Drinking Water and Diabetes Incidence: A Prospective Study of the Diet, Cancer and Health Cohort
June 13, 2014
/
Metals •
Metals
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Create a free account to unlock this study summary.
Microbiome Insiders can read two study summaries for any topic on Microbiome.
Long-term exposure to low-level arsenic in drinking water is associated with cause-specific mortality and hospitalization in the Mt. Amiata area (Tuscany, Italy)
January 10, 2023
/
Metals •
Metals
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Create a free account to unlock this study summary.
Microbiome Insiders can read two study summaries for any topic on Microbiome.
Assessing Acute and Chronic Risks of Human Exposure to Arsenic
May 30, 2024
/
Metals •
Metals
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Create a free account to unlock this study summary.
Microbiome Insiders can read two study summaries for any topic on Microbiome.
Health Effects of Chronic Arsenic Exposure
September 11, 2014
/
Metals •
Metals
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Create a free account to unlock this study summary.
Microbiome Insiders can read two study summaries for any topic on Microbiome.
Arsenic levels in the hair of people exposed to arsenic and awareness of its risk factors
April 17, 2024
/
Metals •
Metals
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Create a free account to unlock this study summary.
Microbiome Insiders can read two study summaries for any topic on Microbiome.
The Effects of an Environmentally Relevant Level of Arsenic on the Gut Microbiome and Its Functional Metagenome
August 29, 2017
/
Metals •
Metals
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Create a free account to unlock this study summary.
Microbiome Insiders can read two study summaries for any topic on Microbiome.
Arsenic Exposure Perturbs the Gut Microbiome and Its Metabolic Profile in Mice: An Integrated Metagenomics and Metabolomics Analysis
January 10, 2014
/
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Create a free account to unlock this study summary.
Microbiome Insiders can read two study summaries for any topic on Microbiome.
Gut Microbiome Phenotypes Driven by Host Genetics Affect Arsenic Metabolism
January 8, 2014
/
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Create a free account to unlock this study summary.
Microbiome Insiders can read two study summaries for any topic on Microbiome.
Biomarkers of Exposure: A Case Study with Inorganic Arsenic
June 12, 2006
/
Metals •
Metals
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Create a free account to unlock this study summary.
Microbiome Insiders can read two study summaries for any topic on Microbiome.
Stool as a novel biomarker for arsenic exposure through diet: a case-control study in a West Bengal population
February 1, 2024
/
Metals •
Metals
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Create a free account to unlock this study summary.
Microbiome Insiders can read two study summaries for any topic on Microbiome.
Total arsenic and speciation analysis of saliva and urine samples from individuals living in a chronic arsenicosis area in China
May 11, 2017
/
Metals •
Metals
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Create a free account to unlock this study summary.
Microbiome Insiders can read two study summaries for any topic on Microbiome.
Chronic arsenic exposure affects stromal cells and signaling in the small intestine in a sex-specific manner
February 4, 2024
/
Metals •
Metals
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Create a free account to unlock this study summary.
Microbiome Insiders can read two study summaries for any topic on Microbiome.
Arsenic induces structural and compositional colonic microbiome change and promotes host nitrogen and amino acid metabolism
December 15, 2016
/
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Create a free account to unlock this study summary.
Microbiome Insiders can read two study summaries for any topic on Microbiome.
Arsenic exposure is associated with alterations to multiple red blood cell parameters among adults in rural Bangladesh
May 4, 2024
/
Metals •
Metals
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Create a free account to unlock this study summary.
Microbiome Insiders can read two study summaries for any topic on Microbiome.
Chronic arsenic exposure perturbs gut microbiota and bile acid homeostasis in mice
January 8, 2024
/
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Create a free account to unlock this study summary.
Microbiome Insiders can read two study summaries for any topic on Microbiome.
The Role of Selenium in Arsenic and Cadmium Toxicity: an Updated Review of Scientific Literature
March 15, 2019
/
Metals •
Metals
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Create a free account to unlock this study summary.
Microbiome Insiders can read two study summaries for any topic on Microbiome.
The Role of Chelation in the Treatment of Arsenic and Mercury Poisoning
November 1, 2013
/
Metals •
Metals
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Create a free account to unlock this study summary.
Microbiome Insiders can read two study summaries for any topic on Microbiome.
Fecal microbiota transplantation: In perspective
October 11, 2015
/
Fecal Microbiota Transplantation (FMT) •
Fecal Microbiota Transplantation (FMT)
Did you know?
The creator of the Microbiome Signatures database was the first recorded person in the world to have undergone an FMT for Celiac Disease in 2012.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Create a free account to unlock this study summary.
Microbiome Insiders can read two study summaries for any topic on Microbiome.
Update History
2025-09-08 12:14:35
2025-09-08 12:12:51
Arsenic (As) majorpublished
Microbiome-Targeted Interventions (MBTIs)
Microbiome Targeted Interventions (MBTIs) are cutting-edge treatments that utilize information from Microbiome Signatures to modulate the microbiome, revolutionizing medicine with unparalleled precision and impact.
Microbiome-Targeted Interventions (MBTIs)
Microbiome Targeted Interventions (MBTIs) are cutting-edge treatments that utilize information from Microbiome Signatures to modulate the microbiome, revolutionizing medicine with unparalleled precision and impact.
Probiotics
Probiotics are live microorganisms that offer significant health benefits when administered in adequate amounts. They primarily work by modulating the gut microbiome, supporting a balanced microbial ecosystem. Probiotics have been shown to improve gut health, modulate immune responses, and even influence metabolic and mental health disorders. With growing evidence supporting their therapeutic potential, probiotics are increasingly recognized for their role in treating conditions like irritable bowel syndrome (IBS), antibiotic-associated diarrhea (AAD), and even mental health conditions like depression and anxiety through their impact on the gut-brain axis.
Fecal Microbiota Transplantation (FMT)
Fecal Microbiota Transplantation (FMT) involves transferring fecal bacteria from a healthy donor to a patient to restore microbiome balance.
References
- The gut microbiome is required for full protection against acute arsenic toxicity in mouse models.. Coryell M, McAlpine M, Pinkham NV, McDermott TR, Walk ST.. (Nat Commun. 2018;9:5424.)
- The Human Gut Microbiome’s Influence on Arsenic Toxicity.. Coryell, M., Roggenbeck, B. A., & Walk, S. T. (2019).. (Current Pharmacology Reports, 5(6), 491.)
- Arsenic disturbs the gut microbiome of individuals in a disadvantaged community in Nepal.. Brabec JL, Wright J, Ly T, Wong HT, McClimans CJ, Tokarev V, Lamendella R, Sherchand S, Shrestha D, Uprety S, Dangol B, Tandukar S, Sherchand JB, Sherchan SP.. (Heliyon. 2020;6:e03313.)
- Distribution of Arsenic Resistance Genes in Prokaryotes.. Ben Fekih, I., Zhang, C., Li, Y. P., Zhao, Y., Alwathnani, H. A., Saquib, Q., Rensing, C., & Cervantes, C. (2018).. (Frontiers in Microbiology, 9, 407801.)
- Helicobacter pylori and arsenic co-exposure Intensify gastric barrier damage and serum metabolic disorder.. Yang, Q., Huang, G., Zhuang, M., Yangqian, S., Wei, Y., Kong, F., Zhong, L., & Hu, S. (2025).. (Microbial Pathogenesis, 205, 107667.)
- Arsenic-induced immunomodulatory effects disorient the survival-death interface by stabilizing the Hsp90/Beclin1 interaction.. Jamal, Z., Das, J., Ghosh, S., Gupta, A., Chattopadhyay, S., & Chatterji, U. (2019).. (Chemosphere, 238, 124647.)
- The Effect of the Combination of Probiotics and Heavy Metals From Various Aspects in Humans: A Systematic Review of Clinical Trial Studies.. Darbandi, A., Navidifar, T., Koupaei, M., Afifirad, R., Nezhad, R. A., Emamie, A., Talebi, M., & Kakanj, M. (2025).. (Health Science Reports, 8(3), e70521.)
- The Human Gut Microbiome’s Influence on Arsenic Toxicity.. Coryell, M., Roggenbeck, B. A., & Walk, S. T. (2019).. (Current Pharmacology Reports, 5(6), 491.)
- The Human Gut Microbiome’s Influence on Arsenic Toxicity.. Coryell, M., Roggenbeck, B. A., & Walk, S. T. (2019).. (Current Pharmacology Reports, 5(6), 491.)
- Introducing the ArsR-Regulated Arsenic Stimulon.. Rawle, R., Saley, T. C., Kang, Y., Wang, Q., Walk, S., Bothner, B., & McDermott, T. R. (2021).. (Frontiers in Microbiology, 12, 630562.)
- Distribution of Arsenic Resistance Genes in Prokaryotes.. Ben Fekih, I., Zhang, C., Li, Y. P., Zhao, Y., Alwathnani, H. A., Saquib, Q., Rensing, C., & Cervantes, C. (2018).. (Frontiers in Microbiology, 9, 407801.)
- The Human Gut Microbiome’s Influence on Arsenic Toxicity.. Coryell, M., Roggenbeck, B. A., & Walk, S. T. (2019).. (Current Pharmacology Reports, 5(6), 491.)
- Distribution of Arsenic Resistance Genes in Prokaryotes.. Ben Fekih, I., Zhang, C., Li, Y. P., Zhao, Y., Alwathnani, H. A., Saquib, Q., Rensing, C., & Cervantes, C. (2018).. (Frontiers in Microbiology, 9, 407801.)
- Introducing the ArsR-Regulated Arsenic Stimulon.. Rawle, R., Saley, T. C., Kang, Y., Wang, Q., Walk, S., Bothner, B., & McDermott, T. R. (2021).. (Frontiers in Microbiology, 12, 630562.)
- The ArsD As(III) metallochaperone.. Ajees, A. A., Yang, J., & Rosen, B. P. (2010).. (Biometals : An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine, 24(3), 391.)
- An arsenic metallochaperone for an arsenic detoxification pump,. Y. Lin, A.R. Walmsley, & B.P. Rosen,. (Proc. Natl. Acad. Sci. U.S.A. 103 (42) 15617-15622,)
- Distribution of Arsenic Resistance Genes in Prokaryotes.. Ben Fekih, I., Zhang, C., Li, Y. P., Zhao, Y., Alwathnani, H. A., Saquib, Q., Rensing, C., & Cervantes, C. (2018).. (Frontiers in Microbiology, 9, 407801.)
- Introducing the ArsR-Regulated Arsenic Stimulon.. Rawle, R., Saley, T. C., Kang, Y., Wang, Q., Walk, S., Bothner, B., & McDermott, T. R. (2021).. (Frontiers in Microbiology, 12, 630562.)
- Introducing the ArsR-Regulated Arsenic Stimulon.. Rawle, R., Saley, T. C., Kang, Y., Wang, Q., Walk, S., Bothner, B., & McDermott, T. R. (2021).. (Frontiers in Microbiology, 12, 630562.)
- The ArsD As(III) metallochaperone.. Ajees, A. A., Yang, J., & Rosen, B. P. (2010).. (Biometals : An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine, 24(3), 391.)
- An arsenic metallochaperone for an arsenic detoxification pump,. Y. Lin, A.R. Walmsley, & B.P. Rosen,. (Proc. Natl. Acad. Sci. U.S.A. 103 (42) 15617-15622,)
- Introducing the ArsR-Regulated Arsenic Stimulon.. Rawle, R., Saley, T. C., Kang, Y., Wang, Q., Walk, S., Bothner, B., & McDermott, T. R. (2021).. (Frontiers in Microbiology, 12, 630562.)
- Arsenic Binding to Proteins.. Shen, S., Li, F., Cullen, W. R., Weinfeld, M., & Le, X. C. (2013).. (Chemical Reviews, 113(10), 7769.)
- Metallothionein does not sequester arsenic(III) ions in condition of acute arsenic toxicity.. Garla, R., Ganger, R., Mohanty, B. P., Verma, S., Bansal, M. P., & Garg, M. L. (2016).. (Toxicology, 366-367, 68-73.)
- Arsenic binding to human metallothionein-3.. Yuan, A. T., & Stillman, M. J. (2023).. (Chemical Science, 14(21), 5756.)
- Evidence of hemoglobin binding to arsenic as a basis for the accumulation of arsenic in rat blood.. Lu M, Wang H, Li XF, Lu X, Cullen WR, Arnold LL, Cohen SM, Le XC.. (Chem Res Toxicol. 2004 Dec;17(12):1733-42.)
- Human red blood cell uptake and sequestration of arsenite and selenite: Evidence of seleno-bis(S-glutathionyl) arsinium ion formation in human cells.. Kaur, G., Javed, W., Ponomarenko, O., Shekh, K., Swanlund, D. P., Zhou, J. R., Summers, K. L., Casini, A., Wenzel, M. N., Casey, J. R., Cordat, E., Pickering, I. J., George, G. N., & Leslie, E. M. (2020).. (Biochemical Pharmacology, 180, 114141.)
- Arsenic trioxide binding to serum proteins.. Shooshtary S, Behtash S, Nafisi S.. (J Photochem Photobiol B. 2015 Jul;148:31-36.)
- Arsenic binding to human metallothionein-3.. Yuan, A. T., & Stillman, M. J. (2023).. (Chemical Science, 14(21), 5756.)
- Induction of Metallothionein I by Arsenic via Metal-activated Transcription Factor 1. He, X., & Ma, Q. (2009).. (The Journal of Biological Chemistry, 284(19), 12609.)
- Arsenic Binding to Proteins.. Shen, S., Li, F., Cullen, W. R., Weinfeld, M., & Le, X. C. (2013).. (Chemical Reviews, 113(10), 7769.)
- Human red blood cell uptake and sequestration of arsenite and selenite: Evidence of seleno-bis(S-glutathionyl) arsinium ion formation in human cells.. Kaur, G., Javed, W., Ponomarenko, O., Shekh, K., Swanlund, D. P., Zhou, J. R., Summers, K. L., Casini, A., Wenzel, M. N., Casey, J. R., Cordat, E., Pickering, I. J., George, G. N., & Leslie, E. M. (2020).. (Biochemical Pharmacology, 180, 114141.)
- Distribution of Arsenic Resistance Genes in Prokaryotes.. Ben Fekih, I., Zhang, C., Li, Y. P., Zhao, Y., Alwathnani, H. A., Saquib, Q., Rensing, C., & Cervantes, C. (2018).. (Frontiers in Microbiology, 9, 407801.)
- Distribution of Arsenic Resistance Genes in Prokaryotes.. Ben Fekih, I., Zhang, C., Li, Y. P., Zhao, Y., Alwathnani, H. A., Saquib, Q., Rensing, C., & Cervantes, C. (2018).. (Frontiers in Microbiology, 9, 407801.)
- Influence of Sulfate Reduction on Arsenic Migration and Transformation in Groundwater Environment.. Liu, E., Yang, Y., Xie, Z., Wang, J., & Chen, M. (2021).. (Water, 14(6), 942.)
- Applications of biological sulfate reduction for remediation of arsenic – A review.. Alam, R., & McPhedran, K. (2019).. (Chemosphere, 222, 932-944.)
- Distribution of Arsenic Resistance Genes in Prokaryotes.. Ben Fekih, I., Zhang, C., Li, Y. P., Zhao, Y., Alwathnani, H. A., Saquib, Q., Rensing, C., & Cervantes, C. (2018).. (Frontiers in Microbiology, 9, 407801.)
- Influence of Sulfate Reduction on Arsenic Migration and Transformation in Groundwater Environment.. Liu, E., Yang, Y., Xie, Z., Wang, J., & Chen, M. (2021).. (Water, 14(6), 942.)
- Influence of Sulfate Reduction on Arsenic Migration and Transformation in Groundwater Environment.. Liu, E., Yang, Y., Xie, Z., Wang, J., & Chen, M. (2021).. (Water, 14(6), 942.)
- The arsenic for phosphorus swap is accidental, rather than a facultative one, and the question whether arsenic is nonessential or toxic is quantitative, not a qualitative one.. Dani, S. U. (2011).. (Science of The Total Environment, 409(22), 4889-4890.)
- Arsenic toxicity: Sources, pathophysiology and mechanism.. Ganie, S. Y., Javaid, D., Hajam, Y. A., & Reshi, M. S. (2023).. (Toxicology Research, 13(1), tfad111.)
- Arsenic toxicity: Sources, pathophysiology and mechanism.. Ganie, S. Y., Javaid, D., Hajam, Y. A., & Reshi, M. S. (2023).. (Toxicology Research, 13(1), tfad111.)
- Arsenic toxicity: Sources, pathophysiology and mechanism.. Ganie, S. Y., Javaid, D., Hajam, Y. A., & Reshi, M. S. (2023).. (Toxicology Research, 13(1), tfad111.)
- Inhibition of red blood cell development by arsenic-induced disruption of GATA-1.. Zhou, X., Medina, S., Bolt, A. M., Zhang, H., Wan, G., Xu, H., Lauer, F. T., Wang, S. C., Burchiel, S. W., & Liu, K. J. (2020).. (Scientific Reports, 10(1), 1-14.)
- Arsenic toxicity: Sources, pathophysiology and mechanism.. Ganie, S. Y., Javaid, D., Hajam, Y. A., & Reshi, M. S. (2023).. (Toxicology Research, 13(1), tfad111.)
- Arsenate replacing phosphate - alternative life chemistries and ion promiscuity.. Tawfik, D. S., & Viola, R. E. (2011).. (Biochemistry, 50(7), 1128.)
- Arsenate replacing phosphate - alternative life chemistries and ion promiscuity.. Tawfik, D. S., & Viola, R. E. (2011).. (Biochemistry, 50(7), 1128.)
- Arsenic toxicity: Sources, pathophysiology and mechanism.. Ganie, S. Y., Javaid, D., Hajam, Y. A., & Reshi, M. S. (2023).. (Toxicology Research, 13(1), tfad111.)
- Inhibition of red blood cell development by arsenic-induced disruption of GATA-1.. Zhou, X., Medina, S., Bolt, A. M., Zhang, H., Wan, G., Xu, H., Lauer, F. T., Wang, S. C., Burchiel, S. W., & Liu, K. J. (2020).. (Scientific Reports, 10(1), 1-14.)
- Helicobacter pylori and arsenic co-exposure Intensify gastric barrier damage and serum metabolic disorder.. Yang, Q., Huang, G., Zhuang, M., Yangqian, S., Wei, Y., Kong, F., Zhong, L., & Hu, S. (2025).. (Microbial Pathogenesis, 205, 107667.)
- Helicobacter pylori and arsenic co-exposure Intensify gastric barrier damage and serum metabolic disorder.. Yang, Q., Huang, G., Zhuang, M., Yangqian, S., Wei, Y., Kong, F., Zhong, L., & Hu, S. (2025).. (Microbial Pathogenesis, 205, 107667.)
- Distribution of Arsenic Resistance Genes in Prokaryotes.. Ben Fekih, I., Zhang, C., Li, Y. P., Zhao, Y., Alwathnani, H. A., Saquib, Q., Rensing, C., & Cervantes, C. (2018).. (Frontiers in Microbiology, 9, 407801.)
- How do intestinal probiotics restore the intestinal barrier?. Gou, Z., Zhang, L., Ren, F., Li, J., & Zhang, L. (2022).. (Frontiers in Microbiology, 13, 929346.)
- Role of Probiotics in the Management of Helicobacter pylori.. Mestre, A., Narayanan, R. S., Rivas, D., John, J., Abdulqader, M. A., Khanna, T., Chakinala, R. C., & Gupta, S. (2022).. (Cureus, 14(6), e26463.)
- How do intestinal probiotics restore the intestinal barrier?. Gou, Z., Zhang, L., Ren, F., Li, J., & Zhang, L. (2022).. (Frontiers in Microbiology, 13, 929346.)
- Sex-specific associations of infants’ gut microbiome with arsenic exposure in a US population.. Hoen, A. G., Madan, J. C., Li, Z., Coker, M., Lundgren, S. N., Morrison, H. G., Palys, T., Jackson, B. P., Sogin, M. L., Cottingham, K. L., & Karagas, M. R. (2018).. (Scientific Reports, 8(1), 1-10.)
- Arsenic disturbs the gut microbiome of individuals in a disadvantaged community in Nepal.. Brabec JL, Wright J, Ly T, Wong HT, McClimans CJ, Tokarev V, Lamendella R, Sherchand S, Shrestha D, Uprety S, Dangol B, Tandukar S, Sherchand JB, Sherchan SP.. (Heliyon. 2020;6:e03313.)
- Effects of chronic exposure to arsenic on the fecal carriage of antibiotic-resistant Escherichia coli among people in rural Bangladesh.. Amin MB, Talukdar PK, Asaduzzaman M, Roy S, Flatgard BM, et al. (2022). (PLOS Pathogens 18(12): e1010952.)
- Long-term exposure to low-level arsenic in drinking water and diabetes incidence: a prospective study of the Diet, Cancer and Health cohort.. Bräuner EV, Nordsborg RB, Andersen ZJ, Tjønneland A, Loft S, Raaschou-Nielsen O.. (Environ Health Perspect. 2014 Oct;122(10):1059-1065.)
- Long-term exposure to low-level arsenic in drinking water is associated with cause-specific mortality and hospitalization in the Mt. Amiata area (Tuscany, Italy).. Nuvolone, D., Stoppa, G., Petri, D. et al.. (BMC Public Health 23, 71 (2023).)
- Sex-specific associations of infants’ gut microbiome with arsenic exposure in a US population.. Hoen, A. G., Madan, J. C., Li, Z., Coker, M., Lundgren, S. N., Morrison, H. G., Palys, T., Jackson, B. P., Sogin, M. L., Cottingham, K. L., & Karagas, M. R. (2018).. (Scientific Reports, 8(1), 1-10.)
- Arsenic disturbs the gut microbiome of individuals in a disadvantaged community in Nepal.. Brabec JL, Wright J, Ly T, Wong HT, McClimans CJ, Tokarev V, Lamendella R, Sherchand S, Shrestha D, Uprety S, Dangol B, Tandukar S, Sherchand JB, Sherchan SP.. (Heliyon. 2020;6:e03313.)
- Arsenic disturbs the gut microbiome of individuals in a disadvantaged community in Nepal.. Brabec JL, Wright J, Ly T, Wong HT, McClimans CJ, Tokarev V, Lamendella R, Sherchand S, Shrestha D, Uprety S, Dangol B, Tandukar S, Sherchand JB, Sherchan SP.. (Heliyon. 2020;6:e03313.)
- Effects of chronic exposure to arsenic on the fecal carriage of antibiotic-resistant Escherichia coli among people in rural Bangladesh.. Amin MB, Talukdar PK, Asaduzzaman M, Roy S, Flatgard BM, et al. (2022). (PLOS Pathogens 18(12): e1010952.)
- Assessing Acute and Chronic Risks of Human Exposure to Arsenic: A Cross-Sectional Study in Ethiopia Employing Body Biomarkers.. Demissie, S., Mekonen, S., Awoke, T., & Mengistie, B. (2024).. (Environmental Health Insights, 18, 11786302241257365.)
- Assessing Acute and Chronic Risks of Human Exposure to Arsenic: A Cross-Sectional Study in Ethiopia Employing Body Biomarkers.. Demissie, S., Mekonen, S., Awoke, T., & Mengistie, B. (2024).. (Environmental Health Insights, 18, 11786302241257365.)
- Toenails as a biomarker of exposure to arsenic: A review.. Signes-Pastor, A. J., Gutiérrez-González, E., García-Villarino, M., Rodríguez-Cabrera, F. D., López-Moreno, J. J., Varea-Jiménez, E., Pastor-Barriuso, R., Pollán, M., Navas-Acien, A., Pérez-Gómez, B., & Karagas, M. R. (2020).. (Environmental Research, 195, 110286.)
- Caveats in hair analysis in chronic arsenic poisoning.. Hindmarsh, J. (2002).. (Clinical Biochemistry, 35(1), 1-11.)
- Health Effects of Chronic Arsenic Exposure.. Hong YS, Song KH, Chung JY.. (J Prev Med Public Health. 2014;47(5):245-252.)
- Effects of chronic exposure to arsenic on the fecal carriage of antibiotic-resistant Escherichia coli among people in rural Bangladesh.. Amin MB, Talukdar PK, Asaduzzaman M, Roy S, Flatgard BM, et al. (2022). (PLOS Pathogens 18(12): e1010952.)
- Evaluation of arsenic field test kits for drinking water: Recommendations for improvement and implications for arsenic affected regions such as Bangladesh.. Reddy, R. R., Rodriguez, G. D., Webster, T. M., Abedin, M. J., Karim, M. R., Raskin, L., & Hayes, K. F. (2020).. (Water Research, 170, 115325.)
- Arsenic disturbs the gut microbiome of individuals in a disadvantaged community in Nepal.. Brabec JL, Wright J, Ly T, Wong HT, McClimans CJ, Tokarev V, Lamendella R, Sherchand S, Shrestha D, Uprety S, Dangol B, Tandukar S, Sherchand JB, Sherchan SP.. (Heliyon. 2020;6:e03313.)
- Arsenic levels in the hair of people exposed to arsenic and awareness of its risk factors.. Chen X, Liu S, Shi M, Luo Y.. (Research Square. Posted April 17, 2024.)
- The Effects of an Environmentally Relevant Level of Arsenic on the Gut Microbiome and Its Functional Metagenome.. Chi, L., Bian, X., Gao, B., Tu, P., Ru, H., & Lu, K. (2017).. (Toxicological Sciences, 160(2), 193.)
- Arsenic Exposure Perturbs the Gut Microbiome and Its Metabolic Profile in Mice: An Integrated Metagenomics and Metabolomics Analysis. Lu K, Abo RP, Schlieper KA, Graffam ME, Levine S, Wishnok JS, Swenberg JA, Tannenbaum SR, Fox JG.. (Environmental Health Perspectives. 2014;122(3):284-291.)
- Optimised ICP-MS quantification method for using animal faeces as a measure of protected area ecosystem health.. Webster, A. B., Ganswindt, A., Small, C., & Rossouw, R. (2021).. (MethodsX, 8, 101441.)
- Arsenic concentrations, diversity and co-occurrence patterns of bacterial and fungal communities in the feces of mice under sub-chronic arsenic exposure through food.. Wang, J., Hu, W., Yang, H., Chen, F., Shu, Y., Zhang, G., Liu, J., Liu, Y., Li, H., & Guo, L. (2020).. (Environment International, 138, 105600.)
- Host-microbiota interplay in arsenic metabolism: Implications on host glucose homeostasis.. Vasudevan, D., Gajendhran, B., Swaminathan, K., & Velmurugan, G. (2025).. (Chemico-Biological Interactions, 406, 111354.)
- Gut Microbiome Phenotypes Driven by Host Genetics Affect Arsenic Metabolism.. Lu, K., Mahbub, R., Cable, P. H., Ru, H., A Parry, N. M., Bodnar, W. M., Wishnok, J. S., Styblo, M., Swenberg, J. A., Fox, J. G., & Tannenbaum, S. R. (2014).. (Chemical Research in Toxicology, 27(2), 172.)
- The Human Gut Microbiome’s Influence on Arsenic Toxicity.. Coryell, M., Roggenbeck, B. A., & Walk, S. T. (2019).. (Current Pharmacology Reports, 5(6), 491.)
- Stool as a novel biomarker for arsenic exposure through diet: a case-control study in a West Bengal population.. Ghosh S, Chakraborty A, Bhowmick S, et al.. (Environ Sci Pollut Res. 2024.)
- Biomarkers of Exposure: A Case Study with Inorganic Arsenic.. Hughes, M. F. (2006).. (Environmental Health Perspectives, 114(11), 1790.)
- Total arsenic and speciation analysis of saliva and urine samples from individuals living in a chronic arsenicosis area in China.. Wang, D., Shimoda, Y., Wang, S., Wang, Z., Liu, J., Liu, X., Jin, H., Gao, F., Tong, J., Yamanaka, K., Zhang, J., & An, Y. (2017).. (Environmental Health and Preventive Medicine, 22, 45.)
- Helicobacter pylori and arsenic co-exposure Intensify gastric barrier damage and serum metabolic disorder.. Yang, Q., Huang, G., Zhuang, M., Yangqian, S., Wei, Y., Kong, F., Zhong, L., & Hu, S. (2025).. (Microbial Pathogenesis, 205, 107667.)
- Arsenic Through the Gastrointestinal Tract.. Calatayud, M., & Laparra Llopis, J. M. (2014).. (Handbook of Arsenic Toxicology, 281-299.)
- Arsenic exposure induces small intestinal toxicity in mice by barrier damage and inflammation response via activating RhoA/ROCK and TLR4/Myd88/NF-κB signaling pathways.. Zhao, D., Jiao, S., & Yi, H. (2023).. (Toxicology Letters, 384, 44-51.)
- Chronic arsenic exposure affects stromal cells and signaling in the small intestine in a sex-specific manner.. Ventrello, S. W., McMurry, N. R., Edwards, N. M., & Bain, L. J. (2024).. (Toxicological Sciences, 198(2), 303.)
- Arsenic induces structural and compositional colonic microbiome change and promotes host nitrogen and amino acid metabolism.. Dheer, R., Patterson, J., Dudash, M., Stachler, E. N., Bibby, K. J., Stolz, D. B., Shiva, S., Wang, Z., Hazen, S. L., Barchowsky, A., & Stolz, J. F. (2015).. (Toxicology and Applied Pharmacology, 289(3), 397.)
- Arsenic disturbs the gut microbiome of individuals in a disadvantaged community in Nepal.. Brabec JL, Wright J, Ly T, Wong HT, McClimans CJ, Tokarev V, Lamendella R, Sherchand S, Shrestha D, Uprety S, Dangol B, Tandukar S, Sherchand JB, Sherchan SP.. (Heliyon. 2020;6:e03313.)
- Arsenic Binding to Proteins.. Shen, S., Li, F., Cullen, W. R., Weinfeld, M., & Le, X. C. (2013).. (Chemical Reviews, 113(10), 7769.)
- Arsenic exposure is associated with alterations to multiple red blood cell parameters among adults in rural Bangladesh.. Medina, S., Zhang, Y., Lauer, F. T., Santos-Medina, L. V., Factor-Litvak, P., Islam, T., Eunus, M., Rahman, M., Uddin, M. N., Liu, K. J., & Parvez, F. (2024).. (Toxicology and Applied Pharmacology, 484, 116858.)
- Arsenic immunotoxicity: A review.. Dangleben, N. L., Skibola, C. F., & Smith, M. T. (2013).. (Environmental Health, 12, 73.)
- Antibiotic susceptibility and arsenic tolerance of urinary bacteria isolated from arsenic-exposed people in Nepal.. Maden N, Singh A, Smith LS.. (Microb Drug Resist. 2011 Mar;17(1):53-8.)
- Chronic arsenic exposure perturbs gut microbiota and bile acid homeostasis in mice.. Yang, Y., Chi, L., Hsiao, C., & Lu, K. (2023).. (Chemical Research in Toxicology, 36(7), 1037.)
- The Effect of the Combination of Probiotics and Heavy Metals From Various Aspects in Humans: A Systematic Review of Clinical Trial Studies.. Darbandi, A., Navidifar, T., Koupaei, M., Afifirad, R., Nezhad, R. A., Emamie, A., Talebi, M., & Kakanj, M. (2025).. (Health Science Reports, 8(3), e70521.)
- Therapeutic Benefits and Dietary Restrictions of Fiber Intake: A State of the Art Review.. Ziani, K., Mititelu, M., Oprea, E., Neacșu, S. M., Moroșan, E., Dumitrescu, D., Roșca, A. C., Drăgănescu, D., & Negrei, C. (2021).. (Nutrients, 14(13), 2641.)
- Selenium and zinc alleviate hepatotoxicity induced by heavy metal mixture (cadmium, mercury, lead and arsenic) via attenuation of inflammo-oxidant pathways.. Ozoani, H., Ezejiofor, A. N., Okolo, K. O., Orish, C. N., Cirovic, A., Cirovic, A., & Orisakwe, O. E. (2023).. (Environmental Toxicology, 39(1), 156-171.)
- The Effect of the Combination of Probiotics and Heavy Metals From Various Aspects in Humans: A Systematic Review of Clinical Trial Studies.. Darbandi, A., Navidifar, T., Koupaei, M., Afifirad, R., Nezhad, R. A., Emamie, A., Talebi, M., & Kakanj, M. (2025).. (Health Science Reports, 8(3), e70521.)
- The Effect of the Combination of Probiotics and Heavy Metals From Various Aspects in Humans: A Systematic Review of Clinical Trial Studies.. Darbandi, A., Navidifar, T., Koupaei, M., Afifirad, R., Nezhad, R. A., Emamie, A., Talebi, M., & Kakanj, M. (2025).. (Health Science Reports, 8(3), e70521.)
- Dietary fiber and prebiotics and the gastrointestinal microbiota.. Holscher, H. D. (2017).. (Gut Microbes, 8(2), 172.)
- The Role of Selenium in Arsenic and Cadmium Toxicity: an Updated Review of Scientific Literature. Zwolak, I. (2019).. (Biological Trace Element Research, 193(1), 44.)
- Protective Effects of Zinc Against Acute Arsenic Toxicity by Regulating Antioxidant Defense System and Cumulative Metallothionein Expression.. Ganger, R., Garla, R., Mohanty, B.P. et al.. (Biol Trace Elem Res 169, 218–229 (2016).)
- Selenium and zinc alleviate hepatotoxicity induced by heavy metal mixture (cadmium, mercury, lead and arsenic) via attenuation of inflammo-oxidant pathways.. Ozoani, H., Ezejiofor, A. N., Okolo, K. O., Orish, C. N., Cirovic, A., Cirovic, A., & Orisakwe, O. E. (2023).. (Environmental Toxicology, 39(1), 156-171.)
- The Role of Chelation in the Treatment of Arsenic and Mercury Poisoning.. Kosnett, M. J. (2013).. (Journal of Medical Toxicology, 9(4), 347.)
- Fecal microbiota transplantation: In perspective.. Gupta, S., Allen-Vercoe, E., & Petrof, E. O. (2016).. (Therapeutic Advances in Gastroenterology, 9(2), 229.)
Coryell M, McAlpine M, Pinkham NV, McDermott TR, Walk ST.
The gut microbiome is required for full protection against acute arsenic toxicity in mouse models.Nat Commun. 2018;9:5424.
Read ReviewCoryell, M., Roggenbeck, B. A., & Walk, S. T. (2019).
The Human Gut Microbiome’s Influence on Arsenic Toxicity.Current Pharmacology Reports, 5(6), 491.
Read ReviewBrabec JL, Wright J, Ly T, Wong HT, McClimans CJ, Tokarev V, Lamendella R, Sherchand S, Shrestha D, Uprety S, Dangol B, Tandukar S, Sherchand JB, Sherchan SP.
Arsenic disturbs the gut microbiome of individuals in a disadvantaged community in Nepal.Heliyon. 2020;6:e03313.
Read ReviewBen Fekih, I., Zhang, C., Li, Y. P., Zhao, Y., Alwathnani, H. A., Saquib, Q., Rensing, C., & Cervantes, C. (2018).
Distribution of Arsenic Resistance Genes in Prokaryotes.Frontiers in Microbiology, 9, 407801.
Read ReviewYang, Q., Huang, G., Zhuang, M., Yangqian, S., Wei, Y., Kong, F., Zhong, L., & Hu, S. (2025).
Helicobacter pylori and arsenic co-exposure Intensify gastric barrier damage and serum metabolic disorder.Microbial Pathogenesis, 205, 107667.
Jamal, Z., Das, J., Ghosh, S., Gupta, A., Chattopadhyay, S., & Chatterji, U. (2019).
Arsenic-induced immunomodulatory effects disorient the survival-death interface by stabilizing the Hsp90/Beclin1 interaction.Chemosphere, 238, 124647.
Darbandi, A., Navidifar, T., Koupaei, M., Afifirad, R., Nezhad, R. A., Emamie, A., Talebi, M., & Kakanj, M. (2025).
The Effect of the Combination of Probiotics and Heavy Metals From Various Aspects in Humans: A Systematic Review of Clinical Trial Studies.Health Science Reports, 8(3), e70521.
Read ReviewCoryell, M., Roggenbeck, B. A., & Walk, S. T. (2019).
The Human Gut Microbiome’s Influence on Arsenic Toxicity.Current Pharmacology Reports, 5(6), 491.
Read ReviewCoryell, M., Roggenbeck, B. A., & Walk, S. T. (2019).
The Human Gut Microbiome’s Influence on Arsenic Toxicity.Current Pharmacology Reports, 5(6), 491.
Read ReviewRawle, R., Saley, T. C., Kang, Y., Wang, Q., Walk, S., Bothner, B., & McDermott, T. R. (2021).
Introducing the ArsR-Regulated Arsenic Stimulon.Frontiers in Microbiology, 12, 630562.
Read ReviewBen Fekih, I., Zhang, C., Li, Y. P., Zhao, Y., Alwathnani, H. A., Saquib, Q., Rensing, C., & Cervantes, C. (2018).
Distribution of Arsenic Resistance Genes in Prokaryotes.Frontiers in Microbiology, 9, 407801.
Read ReviewCoryell, M., Roggenbeck, B. A., & Walk, S. T. (2019).
The Human Gut Microbiome’s Influence on Arsenic Toxicity.Current Pharmacology Reports, 5(6), 491.
Read ReviewBen Fekih, I., Zhang, C., Li, Y. P., Zhao, Y., Alwathnani, H. A., Saquib, Q., Rensing, C., & Cervantes, C. (2018).
Distribution of Arsenic Resistance Genes in Prokaryotes.Frontiers in Microbiology, 9, 407801.
Read ReviewRawle, R., Saley, T. C., Kang, Y., Wang, Q., Walk, S., Bothner, B., & McDermott, T. R. (2021).
Introducing the ArsR-Regulated Arsenic Stimulon.Frontiers in Microbiology, 12, 630562.
Read ReviewAjees, A. A., Yang, J., & Rosen, B. P. (2010).
The ArsD As(III) metallochaperone.Biometals : An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine, 24(3), 391.
Read ReviewY. Lin, A.R. Walmsley, & B.P. Rosen,
An arsenic metallochaperone for an arsenic detoxification pump,Proc. Natl. Acad. Sci. U.S.A. 103 (42) 15617-15622,
Read ReviewBen Fekih, I., Zhang, C., Li, Y. P., Zhao, Y., Alwathnani, H. A., Saquib, Q., Rensing, C., & Cervantes, C. (2018).
Distribution of Arsenic Resistance Genes in Prokaryotes.Frontiers in Microbiology, 9, 407801.
Read ReviewRawle, R., Saley, T. C., Kang, Y., Wang, Q., Walk, S., Bothner, B., & McDermott, T. R. (2021).
Introducing the ArsR-Regulated Arsenic Stimulon.Frontiers in Microbiology, 12, 630562.
Read ReviewRawle, R., Saley, T. C., Kang, Y., Wang, Q., Walk, S., Bothner, B., & McDermott, T. R. (2021).
Introducing the ArsR-Regulated Arsenic Stimulon.Frontiers in Microbiology, 12, 630562.
Read ReviewAjees, A. A., Yang, J., & Rosen, B. P. (2010).
The ArsD As(III) metallochaperone.Biometals : An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine, 24(3), 391.
Read ReviewY. Lin, A.R. Walmsley, & B.P. Rosen,
An arsenic metallochaperone for an arsenic detoxification pump,Proc. Natl. Acad. Sci. U.S.A. 103 (42) 15617-15622,
Read ReviewRawle, R., Saley, T. C., Kang, Y., Wang, Q., Walk, S., Bothner, B., & McDermott, T. R. (2021).
Introducing the ArsR-Regulated Arsenic Stimulon.Frontiers in Microbiology, 12, 630562.
Read ReviewShen, S., Li, F., Cullen, W. R., Weinfeld, M., & Le, X. C. (2013).
Arsenic Binding to Proteins.Chemical Reviews, 113(10), 7769.
Read ReviewGarla, R., Ganger, R., Mohanty, B. P., Verma, S., Bansal, M. P., & Garg, M. L. (2016).
Metallothionein does not sequester arsenic(III) ions in condition of acute arsenic toxicity.Toxicology, 366-367, 68-73.
Yuan, A. T., & Stillman, M. J. (2023).
Arsenic binding to human metallothionein-3.Chemical Science, 14(21), 5756.
Read ReviewLu M, Wang H, Li XF, Lu X, Cullen WR, Arnold LL, Cohen SM, Le XC.
Evidence of hemoglobin binding to arsenic as a basis for the accumulation of arsenic in rat blood.Chem Res Toxicol. 2004 Dec;17(12):1733-42.
Kaur, G., Javed, W., Ponomarenko, O., Shekh, K., Swanlund, D. P., Zhou, J. R., Summers, K. L., Casini, A., Wenzel, M. N., Casey, J. R., Cordat, E., Pickering, I. J., George, G. N., & Leslie, E. M. (2020).
Human red blood cell uptake and sequestration of arsenite and selenite: Evidence of seleno-bis(S-glutathionyl) arsinium ion formation in human cells.Biochemical Pharmacology, 180, 114141.
Shooshtary S, Behtash S, Nafisi S.
Arsenic trioxide binding to serum proteins.J Photochem Photobiol B. 2015 Jul;148:31-36.
Yuan, A. T., & Stillman, M. J. (2023).
Arsenic binding to human metallothionein-3.Chemical Science, 14(21), 5756.
Read ReviewHe, X., & Ma, Q. (2009).
Induction of Metallothionein I by Arsenic via Metal-activated Transcription Factor 1The Journal of Biological Chemistry, 284(19), 12609.
Read ReviewShen, S., Li, F., Cullen, W. R., Weinfeld, M., & Le, X. C. (2013).
Arsenic Binding to Proteins.Chemical Reviews, 113(10), 7769.
Read ReviewKaur, G., Javed, W., Ponomarenko, O., Shekh, K., Swanlund, D. P., Zhou, J. R., Summers, K. L., Casini, A., Wenzel, M. N., Casey, J. R., Cordat, E., Pickering, I. J., George, G. N., & Leslie, E. M. (2020).
Human red blood cell uptake and sequestration of arsenite and selenite: Evidence of seleno-bis(S-glutathionyl) arsinium ion formation in human cells.Biochemical Pharmacology, 180, 114141.
Ben Fekih, I., Zhang, C., Li, Y. P., Zhao, Y., Alwathnani, H. A., Saquib, Q., Rensing, C., & Cervantes, C. (2018).
Distribution of Arsenic Resistance Genes in Prokaryotes.Frontiers in Microbiology, 9, 407801.
Read ReviewBen Fekih, I., Zhang, C., Li, Y. P., Zhao, Y., Alwathnani, H. A., Saquib, Q., Rensing, C., & Cervantes, C. (2018).
Distribution of Arsenic Resistance Genes in Prokaryotes.Frontiers in Microbiology, 9, 407801.
Read ReviewLiu, E., Yang, Y., Xie, Z., Wang, J., & Chen, M. (2021).
Influence of Sulfate Reduction on Arsenic Migration and Transformation in Groundwater Environment.Water, 14(6), 942.
Read ReviewAlam, R., & McPhedran, K. (2019).
Applications of biological sulfate reduction for remediation of arsenic – A review.Chemosphere, 222, 932-944.
Ben Fekih, I., Zhang, C., Li, Y. P., Zhao, Y., Alwathnani, H. A., Saquib, Q., Rensing, C., & Cervantes, C. (2018).
Distribution of Arsenic Resistance Genes in Prokaryotes.Frontiers in Microbiology, 9, 407801.
Read ReviewLiu, E., Yang, Y., Xie, Z., Wang, J., & Chen, M. (2021).
Influence of Sulfate Reduction on Arsenic Migration and Transformation in Groundwater Environment.Water, 14(6), 942.
Read ReviewLiu, E., Yang, Y., Xie, Z., Wang, J., & Chen, M. (2021).
Influence of Sulfate Reduction on Arsenic Migration and Transformation in Groundwater Environment.Water, 14(6), 942.
Read ReviewDani, S. U. (2011).
The arsenic for phosphorus swap is accidental, rather than a facultative one, and the question whether arsenic is nonessential or toxic is quantitative, not a qualitative one.Science of The Total Environment, 409(22), 4889-4890.
Ganie, S. Y., Javaid, D., Hajam, Y. A., & Reshi, M. S. (2023).
Arsenic toxicity: Sources, pathophysiology and mechanism.Toxicology Research, 13(1), tfad111.
Read ReviewGanie, S. Y., Javaid, D., Hajam, Y. A., & Reshi, M. S. (2023).
Arsenic toxicity: Sources, pathophysiology and mechanism.Toxicology Research, 13(1), tfad111.
Read ReviewGanie, S. Y., Javaid, D., Hajam, Y. A., & Reshi, M. S. (2023).
Arsenic toxicity: Sources, pathophysiology and mechanism.Toxicology Research, 13(1), tfad111.
Read ReviewZhou, X., Medina, S., Bolt, A. M., Zhang, H., Wan, G., Xu, H., Lauer, F. T., Wang, S. C., Burchiel, S. W., & Liu, K. J. (2020).
Inhibition of red blood cell development by arsenic-induced disruption of GATA-1.Scientific Reports, 10(1), 1-14.
Read ReviewGanie, S. Y., Javaid, D., Hajam, Y. A., & Reshi, M. S. (2023).
Arsenic toxicity: Sources, pathophysiology and mechanism.Toxicology Research, 13(1), tfad111.
Read ReviewTawfik, D. S., & Viola, R. E. (2011).
Arsenate replacing phosphate - alternative life chemistries and ion promiscuity.Biochemistry, 50(7), 1128.
Read ReviewTawfik, D. S., & Viola, R. E. (2011).
Arsenate replacing phosphate - alternative life chemistries and ion promiscuity.Biochemistry, 50(7), 1128.
Read ReviewGanie, S. Y., Javaid, D., Hajam, Y. A., & Reshi, M. S. (2023).
Arsenic toxicity: Sources, pathophysiology and mechanism.Toxicology Research, 13(1), tfad111.
Read ReviewZhou, X., Medina, S., Bolt, A. M., Zhang, H., Wan, G., Xu, H., Lauer, F. T., Wang, S. C., Burchiel, S. W., & Liu, K. J. (2020).
Inhibition of red blood cell development by arsenic-induced disruption of GATA-1.Scientific Reports, 10(1), 1-14.
Read ReviewYang, Q., Huang, G., Zhuang, M., Yangqian, S., Wei, Y., Kong, F., Zhong, L., & Hu, S. (2025).
Helicobacter pylori and arsenic co-exposure Intensify gastric barrier damage and serum metabolic disorder.Microbial Pathogenesis, 205, 107667.
Yang, Q., Huang, G., Zhuang, M., Yangqian, S., Wei, Y., Kong, F., Zhong, L., & Hu, S. (2025).
Helicobacter pylori and arsenic co-exposure Intensify gastric barrier damage and serum metabolic disorder.Microbial Pathogenesis, 205, 107667.
Ben Fekih, I., Zhang, C., Li, Y. P., Zhao, Y., Alwathnani, H. A., Saquib, Q., Rensing, C., & Cervantes, C. (2018).
Distribution of Arsenic Resistance Genes in Prokaryotes.Frontiers in Microbiology, 9, 407801.
Read ReviewGou, Z., Zhang, L., Ren, F., Li, J., & Zhang, L. (2022).
How do intestinal probiotics restore the intestinal barrier?Frontiers in Microbiology, 13, 929346.
Read ReviewMestre, A., Narayanan, R. S., Rivas, D., John, J., Abdulqader, M. A., Khanna, T., Chakinala, R. C., & Gupta, S. (2022).
Role of Probiotics in the Management of Helicobacter pylori.Cureus, 14(6), e26463.
Read ReviewGou, Z., Zhang, L., Ren, F., Li, J., & Zhang, L. (2022).
How do intestinal probiotics restore the intestinal barrier?Frontiers in Microbiology, 13, 929346.
Read ReviewHoen, A. G., Madan, J. C., Li, Z., Coker, M., Lundgren, S. N., Morrison, H. G., Palys, T., Jackson, B. P., Sogin, M. L., Cottingham, K. L., & Karagas, M. R. (2018).
Sex-specific associations of infants’ gut microbiome with arsenic exposure in a US population.Scientific Reports, 8(1), 1-10.
Read ReviewBrabec JL, Wright J, Ly T, Wong HT, McClimans CJ, Tokarev V, Lamendella R, Sherchand S, Shrestha D, Uprety S, Dangol B, Tandukar S, Sherchand JB, Sherchan SP.
Arsenic disturbs the gut microbiome of individuals in a disadvantaged community in Nepal.Heliyon. 2020;6:e03313.
Read ReviewAmin MB, Talukdar PK, Asaduzzaman M, Roy S, Flatgard BM, et al. (2022)
Effects of chronic exposure to arsenic on the fecal carriage of antibiotic-resistant Escherichia coli among people in rural Bangladesh.PLOS Pathogens 18(12): e1010952.
Read ReviewBräuner EV, Nordsborg RB, Andersen ZJ, Tjønneland A, Loft S, Raaschou-Nielsen O.
Long-term exposure to low-level arsenic in drinking water and diabetes incidence: a prospective study of the Diet, Cancer and Health cohort.Environ Health Perspect. 2014 Oct;122(10):1059-1065.
Read ReviewNuvolone, D., Stoppa, G., Petri, D. et al.
Long-term exposure to low-level arsenic in drinking water is associated with cause-specific mortality and hospitalization in the Mt. Amiata area (Tuscany, Italy).BMC Public Health 23, 71 (2023).
Read ReviewHoen, A. G., Madan, J. C., Li, Z., Coker, M., Lundgren, S. N., Morrison, H. G., Palys, T., Jackson, B. P., Sogin, M. L., Cottingham, K. L., & Karagas, M. R. (2018).
Sex-specific associations of infants’ gut microbiome with arsenic exposure in a US population.Scientific Reports, 8(1), 1-10.
Read ReviewBrabec JL, Wright J, Ly T, Wong HT, McClimans CJ, Tokarev V, Lamendella R, Sherchand S, Shrestha D, Uprety S, Dangol B, Tandukar S, Sherchand JB, Sherchan SP.
Arsenic disturbs the gut microbiome of individuals in a disadvantaged community in Nepal.Heliyon. 2020;6:e03313.
Read ReviewBrabec JL, Wright J, Ly T, Wong HT, McClimans CJ, Tokarev V, Lamendella R, Sherchand S, Shrestha D, Uprety S, Dangol B, Tandukar S, Sherchand JB, Sherchan SP.
Arsenic disturbs the gut microbiome of individuals in a disadvantaged community in Nepal.Heliyon. 2020;6:e03313.
Read ReviewAmin MB, Talukdar PK, Asaduzzaman M, Roy S, Flatgard BM, et al. (2022)
Effects of chronic exposure to arsenic on the fecal carriage of antibiotic-resistant Escherichia coli among people in rural Bangladesh.PLOS Pathogens 18(12): e1010952.
Read ReviewDemissie, S., Mekonen, S., Awoke, T., & Mengistie, B. (2024).
Assessing Acute and Chronic Risks of Human Exposure to Arsenic: A Cross-Sectional Study in Ethiopia Employing Body Biomarkers.Environmental Health Insights, 18, 11786302241257365.
Read ReviewDemissie, S., Mekonen, S., Awoke, T., & Mengistie, B. (2024).
Assessing Acute and Chronic Risks of Human Exposure to Arsenic: A Cross-Sectional Study in Ethiopia Employing Body Biomarkers.Environmental Health Insights, 18, 11786302241257365.
Read ReviewSignes-Pastor, A. J., Gutiérrez-González, E., García-Villarino, M., Rodríguez-Cabrera, F. D., López-Moreno, J. J., Varea-Jiménez, E., Pastor-Barriuso, R., Pollán, M., Navas-Acien, A., Pérez-Gómez, B., & Karagas, M. R. (2020).
Toenails as a biomarker of exposure to arsenic: A review.Environmental Research, 195, 110286.
Hindmarsh, J. (2002).
Caveats in hair analysis in chronic arsenic poisoning.Clinical Biochemistry, 35(1), 1-11.
Hong YS, Song KH, Chung JY.
Health Effects of Chronic Arsenic Exposure.J Prev Med Public Health. 2014;47(5):245-252.
Read ReviewAmin MB, Talukdar PK, Asaduzzaman M, Roy S, Flatgard BM, et al. (2022)
Effects of chronic exposure to arsenic on the fecal carriage of antibiotic-resistant Escherichia coli among people in rural Bangladesh.PLOS Pathogens 18(12): e1010952.
Read ReviewReddy, R. R., Rodriguez, G. D., Webster, T. M., Abedin, M. J., Karim, M. R., Raskin, L., & Hayes, K. F. (2020).
Evaluation of arsenic field test kits for drinking water: Recommendations for improvement and implications for arsenic affected regions such as Bangladesh.Water Research, 170, 115325.
Brabec JL, Wright J, Ly T, Wong HT, McClimans CJ, Tokarev V, Lamendella R, Sherchand S, Shrestha D, Uprety S, Dangol B, Tandukar S, Sherchand JB, Sherchan SP.
Arsenic disturbs the gut microbiome of individuals in a disadvantaged community in Nepal.Heliyon. 2020;6:e03313.
Read ReviewChen X, Liu S, Shi M, Luo Y.
Arsenic levels in the hair of people exposed to arsenic and awareness of its risk factors.Research Square. Posted April 17, 2024.
Read ReviewChi, L., Bian, X., Gao, B., Tu, P., Ru, H., & Lu, K. (2017).
The Effects of an Environmentally Relevant Level of Arsenic on the Gut Microbiome and Its Functional Metagenome.Toxicological Sciences, 160(2), 193.
Read ReviewLu K, Abo RP, Schlieper KA, Graffam ME, Levine S, Wishnok JS, Swenberg JA, Tannenbaum SR, Fox JG.
Arsenic Exposure Perturbs the Gut Microbiome and Its Metabolic Profile in Mice: An Integrated Metagenomics and Metabolomics AnalysisEnvironmental Health Perspectives. 2014;122(3):284-291.
Read ReviewWebster, A. B., Ganswindt, A., Small, C., & Rossouw, R. (2021).
Optimised ICP-MS quantification method for using animal faeces as a measure of protected area ecosystem health.MethodsX, 8, 101441.
Wang, J., Hu, W., Yang, H., Chen, F., Shu, Y., Zhang, G., Liu, J., Liu, Y., Li, H., & Guo, L. (2020).
Arsenic concentrations, diversity and co-occurrence patterns of bacterial and fungal communities in the feces of mice under sub-chronic arsenic exposure through food.Environment International, 138, 105600.
Vasudevan, D., Gajendhran, B., Swaminathan, K., & Velmurugan, G. (2025).
Host-microbiota interplay in arsenic metabolism: Implications on host glucose homeostasis.Chemico-Biological Interactions, 406, 111354.
Lu, K., Mahbub, R., Cable, P. H., Ru, H., A Parry, N. M., Bodnar, W. M., Wishnok, J. S., Styblo, M., Swenberg, J. A., Fox, J. G., & Tannenbaum, S. R. (2014).
Gut Microbiome Phenotypes Driven by Host Genetics Affect Arsenic Metabolism.Chemical Research in Toxicology, 27(2), 172.
Read ReviewCoryell, M., Roggenbeck, B. A., & Walk, S. T. (2019).
The Human Gut Microbiome’s Influence on Arsenic Toxicity.Current Pharmacology Reports, 5(6), 491.
Read ReviewGhosh S, Chakraborty A, Bhowmick S, et al.
Stool as a novel biomarker for arsenic exposure through diet: a case-control study in a West Bengal population.Environ Sci Pollut Res. 2024.
Read ReviewHughes, M. F. (2006).
Biomarkers of Exposure: A Case Study with Inorganic Arsenic.Environmental Health Perspectives, 114(11), 1790.
Read ReviewWang, D., Shimoda, Y., Wang, S., Wang, Z., Liu, J., Liu, X., Jin, H., Gao, F., Tong, J., Yamanaka, K., Zhang, J., & An, Y. (2017).
Total arsenic and speciation analysis of saliva and urine samples from individuals living in a chronic arsenicosis area in China.Environmental Health and Preventive Medicine, 22, 45.
Read ReviewYang, Q., Huang, G., Zhuang, M., Yangqian, S., Wei, Y., Kong, F., Zhong, L., & Hu, S. (2025).
Helicobacter pylori and arsenic co-exposure Intensify gastric barrier damage and serum metabolic disorder.Microbial Pathogenesis, 205, 107667.
Calatayud, M., & Laparra Llopis, J. M. (2014).
Arsenic Through the Gastrointestinal Tract.Handbook of Arsenic Toxicology, 281-299.
Zhao, D., Jiao, S., & Yi, H. (2023).
Arsenic exposure induces small intestinal toxicity in mice by barrier damage and inflammation response via activating RhoA/ROCK and TLR4/Myd88/NF-κB signaling pathways.Toxicology Letters, 384, 44-51.
Ventrello, S. W., McMurry, N. R., Edwards, N. M., & Bain, L. J. (2024).
Chronic arsenic exposure affects stromal cells and signaling in the small intestine in a sex-specific manner.Toxicological Sciences, 198(2), 303.
Read ReviewDheer, R., Patterson, J., Dudash, M., Stachler, E. N., Bibby, K. J., Stolz, D. B., Shiva, S., Wang, Z., Hazen, S. L., Barchowsky, A., & Stolz, J. F. (2015).
Arsenic induces structural and compositional colonic microbiome change and promotes host nitrogen and amino acid metabolism.Toxicology and Applied Pharmacology, 289(3), 397.
Read ReviewBrabec JL, Wright J, Ly T, Wong HT, McClimans CJ, Tokarev V, Lamendella R, Sherchand S, Shrestha D, Uprety S, Dangol B, Tandukar S, Sherchand JB, Sherchan SP.
Arsenic disturbs the gut microbiome of individuals in a disadvantaged community in Nepal.Heliyon. 2020;6:e03313.
Read ReviewShen, S., Li, F., Cullen, W. R., Weinfeld, M., & Le, X. C. (2013).
Arsenic Binding to Proteins.Chemical Reviews, 113(10), 7769.
Read ReviewMedina, S., Zhang, Y., Lauer, F. T., Santos-Medina, L. V., Factor-Litvak, P., Islam, T., Eunus, M., Rahman, M., Uddin, M. N., Liu, K. J., & Parvez, F. (2024).
Arsenic exposure is associated with alterations to multiple red blood cell parameters among adults in rural Bangladesh.Toxicology and Applied Pharmacology, 484, 116858.
Read ReviewDangleben, N. L., Skibola, C. F., & Smith, M. T. (2013).
Arsenic immunotoxicity: A review.Environmental Health, 12, 73.
Maden N, Singh A, Smith LS.
Antibiotic susceptibility and arsenic tolerance of urinary bacteria isolated from arsenic-exposed people in Nepal.Microb Drug Resist. 2011 Mar;17(1):53-8.
Yang, Y., Chi, L., Hsiao, C., & Lu, K. (2023).
Chronic arsenic exposure perturbs gut microbiota and bile acid homeostasis in mice.Chemical Research in Toxicology, 36(7), 1037.
Read ReviewDarbandi, A., Navidifar, T., Koupaei, M., Afifirad, R., Nezhad, R. A., Emamie, A., Talebi, M., & Kakanj, M. (2025).
The Effect of the Combination of Probiotics and Heavy Metals From Various Aspects in Humans: A Systematic Review of Clinical Trial Studies.Health Science Reports, 8(3), e70521.
Read ReviewZiani, K., Mititelu, M., Oprea, E., Neacșu, S. M., Moroșan, E., Dumitrescu, D., Roșca, A. C., Drăgănescu, D., & Negrei, C. (2021).
Therapeutic Benefits and Dietary Restrictions of Fiber Intake: A State of the Art Review.Nutrients, 14(13), 2641.
Ozoani, H., Ezejiofor, A. N., Okolo, K. O., Orish, C. N., Cirovic, A., Cirovic, A., & Orisakwe, O. E. (2023).
Selenium and zinc alleviate hepatotoxicity induced by heavy metal mixture (cadmium, mercury, lead and arsenic) via attenuation of inflammo-oxidant pathways.Environmental Toxicology, 39(1), 156-171.
Darbandi, A., Navidifar, T., Koupaei, M., Afifirad, R., Nezhad, R. A., Emamie, A., Talebi, M., & Kakanj, M. (2025).
The Effect of the Combination of Probiotics and Heavy Metals From Various Aspects in Humans: A Systematic Review of Clinical Trial Studies.Health Science Reports, 8(3), e70521.
Read ReviewDarbandi, A., Navidifar, T., Koupaei, M., Afifirad, R., Nezhad, R. A., Emamie, A., Talebi, M., & Kakanj, M. (2025).
The Effect of the Combination of Probiotics and Heavy Metals From Various Aspects in Humans: A Systematic Review of Clinical Trial Studies.Health Science Reports, 8(3), e70521.
Read ReviewHolscher, H. D. (2017).
Dietary fiber and prebiotics and the gastrointestinal microbiota.Gut Microbes, 8(2), 172.
Zwolak, I. (2019).
The Role of Selenium in Arsenic and Cadmium Toxicity: an Updated Review of Scientific LiteratureBiological Trace Element Research, 193(1), 44.
Read ReviewGanger, R., Garla, R., Mohanty, B.P. et al.
Protective Effects of Zinc Against Acute Arsenic Toxicity by Regulating Antioxidant Defense System and Cumulative Metallothionein Expression.Biol Trace Elem Res 169, 218–229 (2016).
Ozoani, H., Ezejiofor, A. N., Okolo, K. O., Orish, C. N., Cirovic, A., Cirovic, A., & Orisakwe, O. E. (2023).
Selenium and zinc alleviate hepatotoxicity induced by heavy metal mixture (cadmium, mercury, lead and arsenic) via attenuation of inflammo-oxidant pathways.Environmental Toxicology, 39(1), 156-171.
Kosnett, M. J. (2013).
The Role of Chelation in the Treatment of Arsenic and Mercury Poisoning.Journal of Medical Toxicology, 9(4), 347.
Read ReviewGupta, S., Allen-Vercoe, E., & Petrof, E. O. (2016).
Fecal microbiota transplantation: In perspective.Therapeutic Advances in Gastroenterology, 9(2), 229.
Read Review