2025-09-18 16:50:32
Cadmiun (Cd) majorpublished
Cadmium poses significant environmental and health risks, especially due to its persistence in the ecosystem. Unlike some other metals, cadmium does not degrade and can accumulate over time in soil and water, posing a threat to both ecosystems and human health. Industries that process or manufacture batteries, pigments, and plastics are major sources of cadmium pollution.
Cadmium (Cd) is a highly toxic heavy metal commonly found in industrial, agricultural, and environmental settings. Exposure to cadmium can occur through contaminated water, food, soil, and air, and it has been linked to a variety of health issues, including kidney damage, osteoporosis, and cancer. In agriculture, cadmium is often present in phosphate fertilizers and can accumulate in plants, entering the food chain. Its toxicity to living organisms makes cadmium a subject of regulatory concern worldwide, particularly in industrial waste disposal and environmental monitoring.
I am a biochemist with a deep curiosity for the human microbiome and how it shapes human health, and I enjoy making microbiome science more accessible through research and writing. With 2 years experience in microbiome research, I have curated microbiome studies, analyzed microbial signatures, and now focus on interventions as a Microbiome Signatures and Interventions Research Coordinator.
Microbiome Signatures identifies and validates condition-specific microbiome shifts and interventions to accelerate clinical translation. Our multidisciplinary team supports clinicians, researchers, and innovators in turning microbiome science into actionable medicine.
I am a biochemist with a deep curiosity for the human microbiome and how it shapes human health, and I enjoy making microbiome science more accessible through research and writing. With 2 years experience in microbiome research, I have curated microbiome studies, analyzed microbial signatures, and now focus on interventions as a Microbiome Signatures and Interventions Research Coordinator.
Cadmium (Cd) is a non-essential heavy metal toxin that has become ubiquitous in the environment due to industrial emissions and tobacco smoke.[1] Chronic low-level exposure (e.g., 30 μg Cd ingested per day via food) leads to bioaccumulation in the kidney, liver, and bone.[2] Clinically, Cd is a known carcinogen and nephrotoxin, but it also perturbs the host–microbiome ecosystem. Even at sub-toxic concentrations, Cd2+ can disrupt gut microbiota composition and metabolic output, promoting dysbiosis and intestinal inflammation.[3] In parallel, Cd exposure places co-selective pressure on bacteria, enriching for strains that harbor metal-resistance genes often linked with antibiotic resistance determinants.[4] Principal host niches affected include the gut (dietary Cd), lungs (inhaled Cd in smokers), and circulation, where Cd-induced oxidative stress dampens immune functions.[5]
Cadmium primarily exists as a soluble metal in biological fluids, and its speciation is influenced by pH and the presence of various ligands.[6] In the saliva (pH: 7), cadmium from sources such as cigarette smoke or contaminated dust dissolves, forming complexes with thiol-containing molecules or proteins.[7] In the gastric lumen (pH: 2), the acidic environment keeps cadmium soluble, primarily as chloride complexes (e.g., CdCl+), which enhances its absorption.[8] Raising gastric pH can reduce cadmium solubility and its uptake into the body.[9] As the metal moves into the duodenum (pH: 6), cadmium can form less soluble complexes with phosphate or food ligands, reducing its bioavailability.[10] In the colon (neutral pH, anaerobic), microbial sulfides (H_2S) form insoluble cadmium sulfide (CdS), sequestering the metal in the lumen.[11] In blood, cadmium is primarily bound to proteins such as transferrin and albumin, which helps keep free cadmium concentrations low, limiting its microbial availability.[12][13] Urine excretion is minimal, as most cadmium is retained in tissues, with only small amounts excreted in complex with cysteine or citrate.[14]
Bacteria do not have a specific nutritional need for cadmium (Cd), but they can unintentionally take up Cd²⁺ through broad-range metal transporters. For instance, the Mn²⁺ transporter PsaBCA in Streptococcus pneumoniae and the ZIP transporter ZupT in E. coli also bind and import Cd²⁺.[15] When bacteria experience Cd stress, they activate metalloregulatory proteins, like CadC in Staphylococcus aureus, which activates the cadA efflux pump, and CadR in Pseudomonas species, which induces the czcCBA efflux system.[16][17] To mitigate Cd toxicity, bacteria use cytosolic thiols (such as glutathione and cysteine) and metallothionein-like proteins to sequester Cd²⁺, preventing it from reacting. For example, Salmonella upregulates metallothionein under Cd exposure, and S. pneumoniae buffers excess Cd using glutathione.[18][19] Although no enzymes specifically require Cd, general zinc chaperones may inadvertently bind Cd. The primary defense mechanism is active efflux, mediated by P-type ATPases (like ZntA in Vibrio parahaemolyticus) and RND family proton antiporters (such as CzcCBA in Pseudomonas aeruginosa), which pump Cd²⁺ out of the cytosol or into the periplasm/extracellular space.[20]
Component class | Canonical systems and function |
---|---|
Importer | Broad divalent importers (e.g. Mn2+ transporter PsaA of S. pneumoniae) can inadvertently import Cd2+, especially during Mn/Zn limitation.[21] |
Regulator | ArsR/SmtB-family repressors (e.g. CadC on S. aureus pI258 plasmid) sense Cd2+ and induce efflux pump expression. [22][23]CadR in P. aeruginosa activates the CzcCBA operon under Cd stress. |
Chaperone | General metal chaperones may bind Cd2+ nonspecifically. Some bacteria express metallothionein-like proteins (e.g. SmtA in cyanobacteria) that can sequester Cd for detoxification.[24] |
Storage | Polyphosphate granules and metallothioneins can immobilize Cd. E.g. Salmonella induces a metallothionein (Mt) to bind excess Cd, preventing cytosolic damage.[25] |
Efflux | P-type ATPase pumps (e.g. ZntA in V. parahaemolyticus) export Cd2+ at the expense of ATP, required for virulence.[26] RND tripartite pumps (e.g. CzcCBA in P. aeruginosa) extrude Cd2+ alongside Cd2+and Cd2+, lowering intracellular Cd.[27] |
Hosts do not intentionally deploy cadmium in nutritional immunity (since Cd is not needed by microbes), but they sequester Cd2+ passively as a protective measure. In blood, Cd2+ binds strongly to circulating proteins, notably transferrin and albumin.cThis binding limits freely diffusible Cd2+, thereby reducing acute metal toxicity to both host and any blood-borne bacteria. The host’s major metal-binding proteins have varying affinity for Cd: transferrin, primarily an iron transporter, can aberrantly chelate Cd2+, and albumin provides additional thiolate coordination sites.[28] Intracellularly, metallothionein (MT) is the key Cd buffer – MT is a cysteine-rich protein inducible in liver, kidneys, and intestinal mucosa that tightly sequesters Cd2+ (as well as Zn2+ and Cd+).[29] Cadmium exposure triggers MT expression in enterocytes and hepatocytes, which confines Cd in innocuous complexes but also hijacks Zn binding sites, potentially exacerbating Zn starvation for microbes.[30] During inflammation, host calprotectin (S100A8/A9) avidly chelates Zn2+ and Mn2+; it has lower affinity for Cd2+, meaning cadmium escapes nutritional immunity while essential metals are withheld. The consequence is a “double hit” to pathogens: they face Zn/Mn limitation by calprotectin, yet any available Cd2+ can infiltrate their transporters, causing mismetallation (e.g., replacing Zn/Mn in enzymes).[31] This combination impairs bacterial growth and virulence in inflamed niches. Host phagocytes do not actively deploy Cd (unlike Cu or Zn used as antimicrobials); however, macrophages sequester Cd2+ by MT and vesicular compartmentalization, reducing cytosolic spread.
Host factor | Microbial consequence for metal-dependent enzymes or growth |
---|---|
Transferrin (blood) | Binds Cd2+ in plasma (up to 50% bound), lowering free Cd2+ levels.[32] Blood pathogens experience less acute Cd toxicity, but also cannot utilize transferrin-bound Cd (it is effectively inaccessible). |
Albumin (blood) | Non-specifically chelates Cd2+ (about 30% of plasma Cd).[33] Reduces free ionic Cd, protecting bacteria from immediate metal stress. However, albumin-Cd complexes may enter cells via endocytosis, potentially delivering Cd to intracellular pathogens sequestered in endosomes. |
Metallothionein (MT) | Induced in gut epithelium and liver on Cd exposure; sequesters Cd2+ with high affinity.[34] This lowers luminal Cd availability for gut microbes, potentially preserving commensal viability. However, MT also scavenges Zn, intensifying Zn limitation for pathogens and impairing their Zn-dependent enzymes (nutritional immunity side-effect). |
Broad-spectrum metallophores and secreted ligands can influence Cd dynamics in microbial communities. Siderophores that normally scavenge Fe3+ will opportunistically bind other metals: it has been shown that bacterial siderophores can chelate highly toxic metals like Cd2+ and Pb2+, effectively locking them away from organisms.[35] For example, Pseudomonas aeruginosa produces pyoverdine and pyochelin; while these target iron, they can also form complexes with Cd2+ (albeit with lower affinity), thereby reducing local free Cd.[36] Such accidental chelation may protect the producing bacterium and its neighbors from Cd toxicity by precipitation or sequestration of Cd-siderophore complexes. Conversely, if a pathogen’s siderophore captures Cd instead of Fe/Zn, it can misdirect nutrient uptake. This opens niches for competitors: bacteria that do not rely on those metallophores (or that have strong efflux) can outcompete metal-stressed rivals.
Metallophore or ligand complex | Capture system and ecological effect |
---|---|
Fe siderophores (e.g. enterobactin) | Can accidentally bind Cd2+ with moderate affinity. Captured Cd-enterobactin is taken up by E. coli but provides no benefit, imposing a fitness cost and slowing growth under Cd exposure.[37] Ecologically, this can reduce free Cd and protect other gut flora.[38] |
Pyoverdine (P. aeruginosa) | High-affinity Fe3+ chelator that also complexes Cd2+. The Cd-pyoverdine complex remains in the extracellular space or is imported and effluxed, effectively neutralizing Cd locally.[39] This benefits the Pseudomonas-dominated biofilm community by detoxifying the environment, and can inhibit Cd-sensitive competitors. |
Cadmium’s toxicity stems largely from mismetallation – the improper insertion of Cd2+ into metal sites of proteins. Cd2+ closely mimics Zn2+ in coordination chemistry and can displace Zn in metalloproteins, or occupy vacant sites meant for Zn/Mn/Fe.[40] This “wrong-metal” occupancy typically inactivates enzyme function. For example, Cd2+ can replace Zn2+ in zinc-dependent dehydrogenases and proteases, distorting their active sites and halting catalysis.[41] In S. pneumoniae, Cd2+ influx competitively inhibits Mn2+ uptake, leading to Mn depletion in the cell.[42] One consequence is loss of function of Mn-dependent superoxide dismutase, impairing the bacterium’s oxidative stress defense and making it more vulnerable to immune attack.[43]
At-risk enzyme class | Likely wrong-metal outcome |
---|---|
Zn-dependent enzymes | Cd2+ replaces Zn2+ in active sites, typically rendering the enzyme inactive.[44] This stalls bacterial metabolism or DNA repair. |
Mn-dependent enzymes | (e.g. Mn-Superoxide dismutase in S. pneumoniae) – Cd cannot redox-cycle like Mn. If Mn is displaced by Cd, antioxidant enzymes fail, leading to the accumulation of ROS in the microbe.[45] |
Fe–S cluster enzymes | Cd2+ binds cysteine ligands, causing loss of Fe–S clusters. This inactivation triggers metabolic bottlenecks and DNA damage.[46] |
Metal sensors/regulators | Cd binding to these regulators ((Zn or Cu sensor proteins like Zur, AdcR, CsoR)) can flip their on/off state improperly. [47]Misregulated gene expression follows (e.g. constitutive uptake of Zn or efflux of Cu). |
Calcium-binding proteins | Cd2+ seldom replaces Ca2+ (binds to different ligands), but if it does, it may stiffen protein structure.[48] |
Cadmium exposure perturbs multiple virulence pathways in pathogens, often by inducing stress responses and altering metal-dependent virulence factor expression. A clear example is Vibrio parahaemolyticus: the Zn/Cd-efflux pump ZntA is essential for this organism to maintain metal homeostasis and full virulence in vivo.[49]Vibrio mutants lacking ZntA accumulate toxic Cd^2+ and Zn^2+, leading to impaired growth in the host and reduced secretion of key virulence factors (e.g. hemolysins). Cadmium also influences virulence regulation indirectly through oxidative stress. In Salmonella enterica serovar Typhi, intracellular Cd accumulation was shown to increase biofilm formation and reduce susceptibility to macrophage killing.[50] Cadmium-exposed Salmonella upregulates biofilm matrix genes (possibly via the stress sigma factor RpoS), enhancing persistence on surfaces and within the gallbladder. By targeting Cd-handling systems (or exploiting Cd to poison bacteria), we can conceive Microbiome-Based Therapeutic Interventions (MBTIs).[51] For example, a small-molecule inhibitor of the ZntA efflux pump would cause intracellular Cd buildup in pathogens, weakening them during infection. Similarly, vaccines against Mn transporters (like pneumococcal PsaA) not only starve the pathogen of Mn but also leave it more vulnerable to cadmium intoxication. The table below links virulence nodes to potential MBTI strategies:
Targetable node | MBTI concept with predicted effect on pathogenesis |
---|---|
ZntA efflux pump (Vibrio) | Inhibit the Cd/Zn efflux ATPase ZntA.[52] Predicted effect: Intracellular Cd2+ will accumulate in Vibrio, causing metal toxicity and oxidative stress, thereby attenuating virulence (reduced survival in the host and lower toxin secretion). |
PsaA Mn^2+ transporter (S. pneumoniae) | Block or immunize against PsaA. [53] Predicted effect: Pneumococcus cannot acquire Mn, exacerbating Cd-induced mismetallation.[54] This dual metal starvation/intoxication will impair pneumococcal growth and virulence, enhancing clearance. |
Biofilm matrix production | Disrupt Cd-induced biofilms (DNase or matrix-degrading enzymes). Predicted effect:Salmonella and other pathogens often form tighter biofilms under metal stress.[55] Biofilm dispersal agents would counteract this protective mode, making bacteria more susceptible to antibiotics and immune attack. |
Both human epidemiology and animal models link cadmium exposure with significant microbiome perturbations. Chronic dietary Cd intake or environmental exposure correlates with reduced gut microbiome diversity and expansion of Cd-tolerant opportunists. In a cohort from a highly polluted region, individuals with higher blood heavy metals (including Cd) showed enrichment of gut microbial genes for xenobiotic resistance and metabolism.[56] Animal studies provide causal evidence: mice receiving low-dose Cd in drinking water develop dysbiosis characterized by increased Proteobacteria.[57][58] A freshwater snail exposed to waterborne Cd had a marked rise in Bacteroidetes and Pseudomonas spp. in its intestinal flora, indicating Cd selectively favors certain Gram-negative populations.[59] Functionally, Cd-associated dysbiosis is linked to altered metabolic outputs, specifically, reductions in short-chain fatty acid production and suppression of pathways for xenobiotic biodegradation. At higher Cd levels, microbiomes show inhibition of genes for nutrient metabolism and enrichment of stress response and disease-related pathways. Cadmium damages the intestinal barrier. It triggers mucosal inflammation and disrupts tight junction proteins, leading to increased gut permeability. This is, however, reversible with probiotics.[60] In rats, prolonged Cd exposure caused translocation of gut microbes like Corynebacterium, Muribaculaceae into the bloodstream, reflecting a “leaky gut” phenotype.[61] This microbial translocation can provoke systemic inflammation and has been implicated in Cd-related metabolic diseases like liver injury and insulin resistance.
Exposure or concentration range | Observed or predicted microbiome selection signal |
---|---|
Low-level (<0.5 mg in water) | Subtle shifts in gut microbiota; slight increase in metal-tolerant bacteria without overt dysbiosis. Some enrichment of Cd resistance genes begins.[62] |
Moderate (≥0.5 – 1 mg ) | Clear dysbiosis: loss of key SCFA-producing commensals, expansion of opportunistic bacteria.[x] Upregulation of oxidative stress pathways in microbiome. Antibiotic resistance gene co-selection is detectable. |
High (occupational, >1 mg or >5 ppm in diet) | Pronounced selection for Cd-resistant strains (Pseudomonas, Acinetobacter, Staphylococcus). Microbiome diversity drops; resistome blooms (multidrug resistance genes on mobile elements).[63] |
Very high (toxic, e.g. Itai-itai patients) | Gut flora extremely altered – potentially akin to an antibiotic-like wipeout of susceptible microbes.[64] Fungal overgrowth or other dysbiosis may occur as bacteria are heavily stressed. |
Environmental Cd selects for antimicrobial resistance through both co-resistance and cross-resistance mechanisms.[65] Cadmium exposure often co-selects bacteria harboring plasmids that encode heavy metal efflux alongside antibiotic resistance. Thus, use of cadmium in agriculture or industry can enrich MRSA in the environment by favoring those multidrug-resistant clones. Soil microcosm studies have shown Cd contamination is a dominant factor correlating with higher abundance of tetracycline and sulfonamide resistance genes in bacteria.[66] Mechanistically, exposure to sub-inhibitory Cd induces stress responses that can also elevate expression of multi-drug efflux pumps. In Salmonella Typhi, gradual Cd accumulation increased the minimum inhibitory concentrations (MICs) for multiple antibiotics, previously sensitive isolates became resistant after Cd exposure.[67] This was partly attributed to Cd-induced overexpression of efflux pump genes and cellular changes like thicker biofilms and membrane modifications that also impede antibiotics.[68]
Several assays can inform cadmium’s impact on the microbiome and guide clinical decisions. Most Cd measurements use atomic absorption or ICP-MS, which requires blood/urine samples; microbiome sequencing requires frozen stool and is interpreted in context. The goal of these assays is to integrate environmental exposure into patient management, identifying a high Cd burden in a patient with dysbiosis and antibiotic-resistant infections could prompt chelation therapy or exposure counseling.
Assay and specimen | Decision use |
---|---|
Blood cadmium (whole blood, ICP-MS) | Measures systemic Cd load over recent months.[69] Use: Identify high exposure in patients with unexplained GI symptoms or recurrent infections. An elevated blood Cd (above reference) prompts intervention |
Urine cadmium (spot or 24 h, ICP-MS) | This assay reflects cumulative Cd body burden and renal deposition.[70] Use: Chronic exposure biomarker. In a clinical trial, a drop in urine Cd over time would indicate successful decontamination or chelation, which should parallel microbiome recovery. |
Stool metagenomic sequencing | High-depth DNA sequencing of gut microbiome.[71] Use: Detects expansion of metal- and antibiotic-resistance genes.[72] Aids research/precision medicine by confirming that a patient’s dysbiosis is associated with heavy metal selection and tailoring a probiotic or transplant strategy. |
Cadmium’s effect on the microbiome varies substantially by body site. Each body site exhibits a distinct cadmium–microbiome signature: the gut experiences dysbiosis and barrier leakage, the oral and respiratory tracts reflect cadmium from inhalation, and systemic circulation can carry translocated microbes when these barriers fail. Recognizing these site‑specific patterns can guide targeted interventions to restore gut and oral microbiomes, or antioxidants to support lung health in cadmium‑exposed individuals
Body site | Dominant metal-microbe interaction and actionable cue |
---|---|
Oral cavity | Cadmium from smoking coats the oral mucosa, selecting for Cd-resistant bacteria and reducing commensals.[73] High salivary Cd in a smoker hints at oral dysbiosis.[74] |
Stomach | Low pH solubilizes cadmium.[75] In patients on acid suppression, expect more cadmium to pass to the intestine. Monitor these patients for signs of Cd-related gut issues (since the stomach is not buffering Cd as usual). |
Small intestine | Cd absorption site causes local epithelial stress and modest dysbiosis.[76][77] Unexplained nutrient malabsorption or mild enteritis in a patient with Cd exposure should prompt checking Cd levels. |
Colon | Cd selects for hardy anaerobes, increases gut permeability, and sends inflammatory signals.[78] In a person with high Cd (occupational), new-onset IBS-like symptoms or elevated fecal calprotectin warrant evaluating heavy metal exposure. |
Liver | Cd-altered microbiome increases delivery of toxic metabolites (e.g. phenyl sulfate) to liver.[79] Non-alcoholic fatty liver disease (NAFLD) or elevated liver enzymes in the context of Cd exposure – consider that gut microbiome changes might be contributing. |
Blood/Systemic | Cd-compromised gut barrier allows microbial translocation (bacteremia with gut flora).[80] If a patient from a polluted area develops spontaneous bacteremia or sepsis with enteric organisms, test for heavy metals. |
Lung | Inhaled Cd in smokers accumulates in lungs, impairs alveolar macrophages, and possibly shifts lung microbiota towards pathogens.[81] Chronic smokers with recurrent respiratory infections should be a sign to measure Cd levels. |
Managing cadmium’s microbiome impact involves reducing Cd exposure and actively modulating the microbiota, an approach aligning with Microbiome-Based Therapeutic Interventions (MBTIs). A first principle is exposure reduction: identify and eliminate Cd sources, by dietary counseling to avoid rice from high-Cd areas, smoking cessation, and water filtration. This directly lowers the metal stress on the microbiome. Beyond that, several strategies can counter Cd’s effects on microbes
Intervention | Expected microbial or host-niche effect with caution note |
---|---|
Cadmium exposure reduction (primary prevention: stop smoking, filter water, avoid contaminated food) | Gradual normalization of microbiome composition as metal stress is lifted. Beneficial bacteria regain foothold, and resistome gene abundance may decline over time. |
Probiotic therapy (e.g. L. plantarum CCFM8610) | Binds intestinal Cd, lowering its absorption, and secretes protective metabolites that restore gut barrier.[82] Microbiome shifts toward more commensals (e.g. higher Lactobacilli, rebounded SCFA levels). |
Mineral supplementation | Reduces Cd uptake via competitive inhibition at transporters, indirectly protecting microbiota by lowering intra-luminal Cd.[83] Also corrects any deficiency that could worsen Cd absorption. |
Chelation therapy | Lowers body Cd burden, which over time should alleviate Cd pressure on microbiota, allowing recovery of normal populations.[84] Some patients see improved microbial diversity after chelation. |
Efflux pump inhibitor | In a Cd-exposed infection, blocks bacterial metal efflux, causing Cd to accumulate inside bacteria.[85] This can potentiate antibiotic effect and reduce pathogen load. |
Fecal microbiota transplantation (FMT) | Restores a diverse microbial community post-Cd-exposure, reintroducing metal-sensitive but health-promoting taxa that had been lost.[86] Can improve gut barrier function and metabolite profiles. |
Despite growing insights, key gaps hinder clinical translation of cadmium–microbiome science. We lack enough longitudinal human data proving that cadmium causes specific microbiome-mediated health outcomes. Most evidence comes from cross-sectional associations or animal studies. Priority should be given to controlled longitudinal studies or trials in exposed populations monitoring microbiome changes and clinical endpoints. Which microbial enzymes and pathways are most vulnerable to cadmium in vivo? We have a general idea but a comprehensive “metallomic” map in the gut microbiome under Cd stress is missing. Filling this gap via metaproteomics/metabolomics can identify biomarkers, perhaps specific metabolite changes or enzyme activity losses that signal early Cd effects. Those markers could become clinical tests for subclinical heavy metal stress. While probiotics show promise in mitigating Cd effects, we need to pinpoint optimal strains, dosing, and combinations (synbiotics) for different scenarios. It is uncertain how long benefits persist if exposure continues, or whether multi-strain consortia work better than single strains. Research should also address potential unintended consequences, such as probiotics binding beneficial micronutrients.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Did you know?
Probiotics can help you sleep better. Research shows that Lactobacillus strains have been linked to improved sleep quality by influencing the production of neurotransmitters like GABA, which promotes relaxation and reduces anxiety.
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ut laoreet tortor. Donec euismod fermentum pharetra. Nullam at tristique enim. In sit amet molestie
Alias iure reprehenderit aut accusantium. Molestiae dolore suscipit. Necessitatibus eum quaerat. Repudiandae suscipit quo necessitatibus. Voluptatibus ullam nulla temporibus nobis. Atque eaque sed totam est assumenda. Porro modi soluta consequuntur veritatis excepturi minus delectus reprehenderit est. Eveniet labore ut quas minima aliquid quibusdam. Vitae possimus fuga praesentium eveniet debitis exercitationem deleniti.
2025-09-18 16:50:32
Cadmiun (Cd) majorpublished
Microbiome Targeted Interventions (MBTIs) are cutting-edge treatments that utilize information from Microbiome Signatures to modulate the microbiome, revolutionizing medicine with unparalleled precision and impact.
Microbiome Targeted Interventions (MBTIs) are cutting-edge treatments that utilize information from Microbiome Signatures to modulate the microbiome, revolutionizing medicine with unparalleled precision and impact.
Probiotics are live microorganisms that offer significant health benefits when administered in adequate amounts. They primarily work by modulating the gut microbiome, supporting a balanced microbial ecosystem. Probiotics have been shown to improve gut health, modulate immune responses, and even influence metabolic and mental health disorders. With growing evidence supporting their therapeutic potential, probiotics are increasingly recognized for their role in treating conditions like irritable bowel syndrome (IBS), antibiotic-associated diarrhea (AAD), and even mental health conditions like depression and anxiety through their impact on the gut-brain axis.
Begg, S. L., Eijkelkamp, B. A., Luo, Z., Couñago, R. M., Morey, J. R., Maher, M. J., Ong, Y., McEwan, A. G., Kobe, B., Paton, J. C., & McDevitt, C. A. (2015).
Dysregulation of transition metal ion homeostasis is the molecular basis for cadmium toxicity in Streptococcus pneumoniae.Nature Communications, 6, 6418.
Read ReviewEzedom, T., & Asagba, S. O. (2016).
Effect of a controlled food-chain mediated exposure to cadmium and arsenic on oxidative enzymes in the tissues of rats.Toxicology Reports, 3, 708.
Read ReviewLiu, S., Deng, X., Li, Z., Zhou, W., Wang, G., Zhan, J., & Hu, B. (2023).
Environmental cadmium exposure alters the internal microbiota and metabolome of Sprague–Dawley rats.Frontiers in Veterinary Science, 10, 1219729.
Read ReviewKaur, U. J., Preet, S., & Rishi, P. (2018).
Augmented antibiotic resistance associated with cadmium induced alterations in Salmonella enterica serovar Typhi.Scientific Reports, 8(1), 1-10.
Read ReviewCox, J. N., Rahman, M. A., Bao, S., Liu, M., Wheeler, S. E., & Knoell, D. L. (2016).
Cadmium attenuates the macrophage response to LPS through inhibition of the NF-κB pathway.American Journal of Physiology - Lung Cellular and Molecular Physiology, 311(4), L754.
Read ReviewBegg, S. L., Eijkelkamp, B. A., Luo, Z., Couñago, R. M., Morey, J. R., Maher, M. J., Ong, Y., McEwan, A. G., Kobe, B., Paton, J. C., & McDevitt, C. A. (2015).
Dysregulation of transition metal ion homeostasis is the molecular basis for cadmium toxicity in Streptococcus pneumoniae.Nature Communications, 6, 6418.
Read ReviewGenchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020).
The Effects of Cadmium Toxicity.International Journal of Environmental Research and Public Health, 17(11), 3782.
Read ReviewRahimzadeh, M. R., Rahimzadeh, M. R., & Kazemi, S.
Cadmium toxicity and treatment: An update.Caspian Journal of Internal Medicine, 8(3), 135.
Read ReviewWaisberg, M., Black, W., Chan, D., & Hale, B. (2005).
The effect of pharmacologically altered gastric pH on cadmium absorption from the diet and its accumulation in murine tissues.Food and Chemical Toxicology, 43(5), 775-782.
Read ReviewBolan, S., Seshadri, B., Keely, S., Kunhikrishnan, A., Bruce, J., Grainge, I., Talley, N. J., & Naidu, R. (2021).
Bioavailability of arsenic, cadmium, lead and mercury as measured by intestinal permeability.Scientific Reports, 11(1), 1-14.
Read ReviewBuret, A. G., Allain, T., Motta, P., & Wallace, J. L. (2022).
Effects of Hydrogen Sulfide on the Microbiome: From Toxicity to Therapy.Antioxidants & Redox Signaling, 36(4-6), 211.
Read ReviewDelRaso, N. J., Foy, B. D., Gearhart, J. M., & Frazier, J. M. (2003).
Cadmium Uptake Kinetics in Rat Hepatocytes: Correction for Albumin Binding.Toxicological Sciences, 72(1), 19-30.
Read ReviewSaljooghi, A. S., & Fatemi, S. (2010).
Cadmium transport in blood serum.Toxicology and Industrial Health.
Read ReviewGenchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020).
The Effects of Cadmium Toxicity.International Journal of Environmental Research and Public Health, 17(11), 3782.
Read ReviewBegg, S. L., Eijkelkamp, B. A., Luo, Z., Couñago, R. M., Morey, J. R., Maher, M. J., Ong, Y., McEwan, A. G., Kobe, B., Paton, J. C., & McDevitt, C. A. (2015).
Dysregulation of transition metal ion homeostasis is the molecular basis for cadmium toxicity in Streptococcus pneumoniae.Nature Communications, 6, 6418.
Read ReviewHoogewerf, A. J., Van Dyk, L. A., Buit, T. S., Roukema, D., Resseguie, E., Plaisier, C., Le, N., Heeringa, L., & Vander Griend, D. A. (2015).
Functional characterization of a cadmium resistance operon in Staphylococcus aureus ATCC12600: CadC does not function as a repressor.Journal of Basic Microbiology, 55(2), 148-159.
Read ReviewEndo, G., & Silver, S. (1995).
CadC, the transcriptional regulatory protein of the cadmium resistance system of Staphylococcus aureus plasmid pI258.Journal of Bacteriology, 177(15), 4437.
Read ReviewBegg, S. L., Eijkelkamp, B. A., Luo, Z., Couñago, R. M., Morey, J. R., Maher, M. J., Ong, Y., McEwan, A. G., Kobe, B., Paton, J. C., & McDevitt, C. A. (2015).
Dysregulation of transition metal ion homeostasis is the molecular basis for cadmium toxicity in Streptococcus pneumoniae.Nature Communications, 6, 6418.
Read ReviewKaur, U. J., Preet, S., & Rishi, P. (2018).
Augmented antibiotic resistance associated with cadmium induced alterations in Salmonella enterica serovar Typhi.Scientific Reports, 8(1), 1-10.
Read ReviewZheng, C., Zhai, Y., Qiu, J., Wang, M., Xu, Z., Chen, X., … Jiao, X. (2024).
ZntA maintains zinc and cadmium homeostasis and promotes oxidative stress resistance and virulence in Vibrio parahaemolyticus.Gut Microbes, 16(1).
Read ReviewBegg, S. L., Eijkelkamp, B. A., Luo, Z., Couñago, R. M., Morey, J. R., Maher, M. J., Ong, Y., McEwan, A. G., Kobe, B., Paton, J. C., & McDevitt, C. A. (2015).
Dysregulation of transition metal ion homeostasis is the molecular basis for cadmium toxicity in Streptococcus pneumoniae.Nature Communications, 6, 6418.
Read ReviewHoogewerf, A. J., Van Dyk, L. A., Buit, T. S., Roukema, D., Resseguie, E., Plaisier, C., Le, N., Heeringa, L., & Vander Griend, D. A. (2015).
Functional characterization of a cadmium resistance operon in Staphylococcus aureus ATCC12600: CadC does not function as a repressor.Journal of Basic Microbiology, 55(2), 148-159.
Read ReviewEndo, G., & Silver, S. (1995).
CadC, the transcriptional regulatory protein of the cadmium resistance system of Staphylococcus aureus plasmid pI258.Journal of Bacteriology, 177(15), 4437.
Read ReviewNordberg, M., & Nordberg, G. F. (2022).
Metallothionein and Cadmium Toxicology—Historical Review and Commentary.Biomolecules, 12(3), 360.
Read ReviewKaur, U. J., Preet, S., & Rishi, P. (2018).
Augmented antibiotic resistance associated with cadmium induced alterations in Salmonella enterica serovar Typhi.Scientific Reports, 8(1), 1-10.
Read ReviewZheng, C., Zhai, Y., Qiu, J., Wang, M., Xu, Z., Chen, X., … Jiao, X. (2024).
ZntA maintains zinc and cadmium homeostasis and promotes oxidative stress resistance and virulence in Vibrio parahaemolyticus.Gut Microbes, 16(1).
Read ReviewLiu, H., Zhang, Y., Wang, Y., Xie, X., & Shi, Q. (2021).
The Connection between Czc and Cad Systems Involved in Cadmium Resistance in Pseudomonas putida.International Journal of Molecular Sciences, 22(18), 9697.
Read ReviewDelRaso, N. J., Foy, B. D., Gearhart, J. M., & Frazier, J. M. (2003).
Cadmium Uptake Kinetics in Rat Hepatocytes: Correction for Albumin Binding.Toxicological Sciences, 72(1), 19-30.
Read ReviewNordberg, M., & Nordberg, G. F. (2022).
Metallothionein and Cadmium Toxicology—Historical Review and Commentary.Biomolecules, 12(3), 360.
Read ReviewEarley, B. J., Cubillas, C., Warnhoff, K., Ahmad, R., Alcantar, A., Lyon, M. D., Schneider, D. L., & Kornfeld, K. (2021).
Cadmium hijacks the high zinc response by binding and activating the HIZR-1 nuclear receptor.Proceedings of the National Academy of Sciences of the United States of America, 118(42), e2022649118.
Read ReviewBegg, S. L., Eijkelkamp, B. A., Luo, Z., Couñago, R. M., Morey, J. R., Maher, M. J., Ong, Y., McEwan, A. G., Kobe, B., Paton, J. C., & McDevitt, C. A. (2015).
Dysregulation of transition metal ion homeostasis is the molecular basis for cadmium toxicity in Streptococcus pneumoniae.Nature Communications, 6, 6418.
Read ReviewSaljooghi, A. S., & Fatemi, S. (2010).
Cadmium transport in blood serum.Toxicology and Industrial Health.
Read ReviewDelRaso, N. J., Foy, B. D., Gearhart, J. M., & Frazier, J. M. (2003).
Cadmium Uptake Kinetics in Rat Hepatocytes: Correction for Albumin Binding.Toxicological Sciences, 72(1), 19-30.
Read ReviewNordberg, M., & Nordberg, G. F. (2022).
Metallothionein and Cadmium Toxicology—Historical Review and Commentary.Biomolecules, 12(3), 360.
Read ReviewKramer, J., Özkaya, Ö., & Kümmerli, R. (2019).
Bacterial siderophores in community and host interactions.Nature Reviews. Microbiology, 18(3), 152.
Read ReviewKramer, J., Özkaya, Ö., & Kümmerli, R. (2019).
Bacterial siderophores in community and host interactions.Nature Reviews. Microbiology, 18(3), 152.
Read ReviewKramer, J., Özkaya, Ö., & Kümmerli, R. (2019).
Bacterial siderophores in community and host interactions.Nature Reviews. Microbiology, 18(3), 152.
Read ReviewKramer, J., Özkaya, Ö., & Kümmerli, R. (2019).
Bacterial siderophores in community and host interactions.Nature Reviews. Microbiology, 18(3), 152.
Read ReviewKramer, J., Özkaya, Ö., & Kümmerli, R. (2019).
Bacterial siderophores in community and host interactions.Nature Reviews. Microbiology, 18(3), 152.
Read ReviewDavidova, S., Milushev, V., & Satchanska, G. (2024).
The Mechanisms of Cadmium Toxicity in Living Organisms.Toxics, 12(12), 875.
Read ReviewEarley, B. J., Cubillas, C., Warnhoff, K., Ahmad, R., Alcantar, A., Lyon, M. D., Schneider, D. L., & Kornfeld, K. (2021).
Cadmium hijacks the high zinc response by binding and activating the HIZR-1 nuclear receptor.Proceedings of the National Academy of Sciences of the United States of America, 118(42), e2022649118.
Read ReviewBegg, S. L., Eijkelkamp, B. A., Luo, Z., Couñago, R. M., Morey, J. R., Maher, M. J., Ong, Y., McEwan, A. G., Kobe, B., Paton, J. C., & McDevitt, C. A. (2015).
Dysregulation of transition metal ion homeostasis is the molecular basis for cadmium toxicity in Streptococcus pneumoniae.Nature Communications, 6, 6418.
Read ReviewBegg, S. L., Eijkelkamp, B. A., Luo, Z., Couñago, R. M., Morey, J. R., Maher, M. J., Ong, Y., McEwan, A. G., Kobe, B., Paton, J. C., & McDevitt, C. A. (2015).
Dysregulation of transition metal ion homeostasis is the molecular basis for cadmium toxicity in Streptococcus pneumoniae.Nature Communications, 6, 6418.
Read ReviewEarley, B. J., Cubillas, C., Warnhoff, K., Ahmad, R., Alcantar, A., Lyon, M. D., Schneider, D. L., & Kornfeld, K. (2021).
Cadmium hijacks the high zinc response by binding and activating the HIZR-1 nuclear receptor.Proceedings of the National Academy of Sciences of the United States of America, 118(42), e2022649118.
Read ReviewBegg, S. L., Eijkelkamp, B. A., Luo, Z., Couñago, R. M., Morey, J. R., Maher, M. J., Ong, Y., McEwan, A. G., Kobe, B., Paton, J. C., & McDevitt, C. A. (2015).
Dysregulation of transition metal ion homeostasis is the molecular basis for cadmium toxicity in Streptococcus pneumoniae.Nature Communications, 6, 6418.
Read ReviewXu FF, Imlay JA.2012.
Silver(I), Mercury(II), Cadmium(II), and Zinc(II) Target Exposed Enzymic Iron-Sulfur Clusters when They Toxify Escherichia coli .Appl Environ Microbiol78:.
Read ReviewBegg, S. L., Eijkelkamp, B. A., Luo, Z., Couñago, R. M., Morey, J. R., Maher, M. J., Ong, Y., McEwan, A. G., Kobe, B., Paton, J. C., & McDevitt, C. A. (2015).
Dysregulation of transition metal ion homeostasis is the molecular basis for cadmium toxicity in Streptococcus pneumoniae.Nature Communications, 6, 6418.
Read ReviewMorales, K. A., Yang, Y., Long, Z., Li, P., Taylor, A. B., Hart, P. J., & Igumenova, T. I. (2013).
Cd2+ as a Ca2+ Surrogate in Protein–Membrane Interactions: Isostructural but Not Isofunctional.Journal of the American Chemical Society, 135(35), 12980.
Zheng, C., Zhai, Y., Qiu, J., Wang, M., Xu, Z., Chen, X., … Jiao, X. (2024).
ZntA maintains zinc and cadmium homeostasis and promotes oxidative stress resistance and virulence in Vibrio parahaemolyticus.Gut Microbes, 16(1).
Read ReviewKaur, U. J., Preet, S., & Rishi, P. (2018).
Augmented antibiotic resistance associated with cadmium induced alterations in Salmonella enterica serovar Typhi.Scientific Reports, 8(1), 1-10.
Read ReviewMars, R. A., Frith, M., & Kashyap, P. C. (2020).
What is the best strategy for moving microbiome-based therapies for functional gastrointestinal disorders into the clinic? Is microbiome ready for clinical practice?Gastroenterology, 160(2), 538.
Read ReviewZheng, C., Zhai, Y., Qiu, J., Wang, M., Xu, Z., Chen, X., … Jiao, X. (2024).
ZntA maintains zinc and cadmium homeostasis and promotes oxidative stress resistance and virulence in Vibrio parahaemolyticus.Gut Microbes, 16(1).
Read ReviewBegg, S. L., Eijkelkamp, B. A., Luo, Z., Couñago, R. M., Morey, J. R., Maher, M. J., Ong, Y., McEwan, A. G., Kobe, B., Paton, J. C., & McDevitt, C. A. (2015).
Dysregulation of transition metal ion homeostasis is the molecular basis for cadmium toxicity in Streptococcus pneumoniae.Nature Communications, 6, 6418.
Read ReviewBegg, S. L., Eijkelkamp, B. A., Luo, Z., Couñago, R. M., Morey, J. R., Maher, M. J., Ong, Y., McEwan, A. G., Kobe, B., Paton, J. C., & McDevitt, C. A. (2015).
Dysregulation of transition metal ion homeostasis is the molecular basis for cadmium toxicity in Streptococcus pneumoniae.Nature Communications, 6, 6418.
Read ReviewKaur, U. J., Preet, S., & Rishi, P. (2018).
Augmented antibiotic resistance associated with cadmium induced alterations in Salmonella enterica serovar Typhi.Scientific Reports, 8(1), 1-10.
Read ReviewDe Filippis, F., Valentino, V., Sequino, G., Borriello, G., Riccardi, M. G., Pierri, B., Cerino, P., Pizzolante, A., Pasolli, E., Esposito, M., Limone, A., & Ercolini, D. (2024).
Exposure to environmental pollutants selects for xenobiotic-degrading functions in the human gut microbiome.Nature Communications, 15(1), 1-11.
Read ReviewLiu, S., Deng, X., Li, Z., Zhou, W., Wang, G., Zhan, J., & Hu, B. (2023).
Environmental cadmium exposure alters the internal microbiota and metabolome of Sprague–Dawley rats.Frontiers in Veterinary Science, 10, 1219729.
Read ReviewLiu, Y., Li, Y., Xia, Y., Liu, K., Ren, L., & Ji, Y. (2020).
The Dysbiosis of Gut Microbiota Caused by Low-Dose Cadmium Aggravate the Injury of Mice Liver through Increasing Intestinal Permeability.Microorganisms, 8(2), 211.
Read ReviewJiang, J., Li, W., Wu, Y., Cheng, C., Ye, Q., Feng, J., & Xie, Z. (2022).
Effects of cadmium exposure on intestinal microflora of Cipangopaludina cathayensis.Frontiers in Microbiology, 13, 984757.
Read ReviewZhai QTian FZhao J, Zhang HNarbad A, Chen W2016.
Oral Administration of Probiotics Inhibits Absorption of the Heavy Metal Cadmium by Protecting the Intestinal Barrier.Appl Environ Microbiol82:.
Read ReviewLiu, S., Deng, X., Li, Z., Zhou, W., Wang, G., Zhan, J., & Hu, B. (2023).
Environmental cadmium exposure alters the internal microbiota and metabolome of Sprague–Dawley rats.Frontiers in Veterinary Science, 10, 1219729.
Read ReviewCharkiewicz, A. E., Omeljaniuk, W. J., Nowak, K., Garley, M., & Nikliński, J. (2023).
Cadmium Toxicity and Health Effects—A Brief Summary.Molecules, 28(18), 6620.
Read ReviewJiang, J., Li, W., Wu, Y., Cheng, C., Ye, Q., Feng, J., & Xie, Z. (2022).
Effects of cadmium exposure on intestinal microflora of Cipangopaludina cathayensis.Frontiers in Microbiology, 13, 984757.
Read ReviewNogawa K, Kido T.
Biological monitoring of cadmium exposure in itai-itai disease epidemiology.Int Arch Occup Environ Health. 1993;65(1 Suppl):S43-6.
Pan, J., Zheng, N., An, Q., Li, Y., Sun, S., Zhang, W., & Song, X. (2023).
Effects of cadmium and copper mixtures on antibiotic resistance genes in rhizosphere soil.Ecotoxicology and Environmental Safety, 259, 115008.
Read ReviewPu, Q., Fan, X., Sun, A., Pan, T., Li, H., Bo Lassen, S., An, X., & Su, J. (2021).
Co-effect of cadmium and iron oxide nanoparticles on plasmid-mediated conjugative transfer of antibiotic resistance genes.Environment International, 152, 106453.
Read ReviewKaur, U. J., Preet, S., & Rishi, P. (2018).
Augmented antibiotic resistance associated with cadmium induced alterations in Salmonella enterica serovar Typhi.Scientific Reports, 8(1), 1-10.
Read ReviewKaur, U. J., Preet, S., & Rishi, P. (2018).
Augmented antibiotic resistance associated with cadmium induced alterations in Salmonella enterica serovar Typhi.Scientific Reports, 8(1), 1-10.
Read ReviewJones, D. R., Jarrett, J. M., Tevis, D. S., Franklin, M., Mullinix, N. J., Wallon, K. L., Caldwell, K. L., & Jones, R. L. (2016).
Analysis of whole human blood for Pb, Cd, Hg, Se, and Mn by ICP-DRC-MS for biomonitoring and acute exposures.Talanta, 162, 114.
Vacchi-Suzzi, C., Kruse, D., Harrington, J., Levine, K., & Meliker, J. R. (2016).
Is Urinary Cadmium a Biomarker of Long-term Exposure in Humans? A Review.Current Environmental Health Reports, 3(4), 450.
Read ReviewDe Filippis, F., Valentino, V., Sequino, G., Borriello, G., Riccardi, M. G., Pierri, B., Cerino, P., Pizzolante, A., Pasolli, E., Esposito, M., Limone, A., & Ercolini, D. (2024).
Exposure to environmental pollutants selects for xenobiotic-degrading functions in the human gut microbiome.Nature Communications, 15(1), 1-11.
Read ReviewPerdigão, J., & Almeida, S. (2021).
Metagenomic Approaches to Analyze Antimicrobial Resistance: An Overview.Frontiers in Genetics, 11, 575592.
Talio, M. C., Luconi, M. O., Masi, A. N., & Fernández, L. P. (2010).
Cadmium monitoring in saliva and urine as indicator of smoking addiction.Science of The Total Environment, 408(16), 3125-3132.
Read ReviewZheng, Q., Zhang, Y., Li, J., Pei, S., Liu, J., Feng, L., Zhang, L., Liu, X., Luo, B., Ruan, Y., Hu, W., Niu, J., & Tian, T. (2024).
The impact of interactions between heavy metals and smoking exposures on the formation of oral microbial communities.Frontiers in Microbiology, 15, 1502812.
Waisberg, M., Black, W., Chan, D., & Hale, B. (2005).
The effect of pharmacologically altered gastric pH on cadmium absorption from the diet and its accumulation in murine tissues.Food and Chemical Toxicology, 43(5), 775-782.
Motta, C. M., Califano, E., Scudiero, R., Avallone, B., Fogliano, C., Bonis, S. D., Raggio, A., & Simoniello, P. (2022).
Effects of Cadmium Exposure on Gut Villi in Danio rerio.International Journal of Molecular Sciences, 23(4), 1927.
Read ReviewTinkov, A. A., Gritsenko, V. A., Skalnaya, M. G., Cherkasov, S. V., Aaseth, J., & Skalny, A. V. (2018).
Gut as a target for cadmium toxicity.Environmental Pollution, 235, 429-434.
Read ReviewLiu, S., Deng, X., Li, Z., Zhou, W., Wang, G., Zhan, J., & Hu, B. (2023).
Environmental cadmium exposure alters the internal microbiota and metabolome of Sprague–Dawley rats.Frontiers in Veterinary Science, 10, 1219729.
Read ReviewLiu, S., Deng, X., Li, Z., Zhou, W., Wang, G., Zhan, J., & Hu, B. (2023).
Environmental cadmium exposure alters the internal microbiota and metabolome of Sprague–Dawley rats.Frontiers in Veterinary Science, 10, 1219729.
Read ReviewLiu, S., Deng, X., Li, Z., Zhou, W., Wang, G., Zhan, J., & Hu, B. (2023).
Environmental cadmium exposure alters the internal microbiota and metabolome of Sprague–Dawley rats.Frontiers in Veterinary Science, 10, 1219729.
Read ReviewCox, J. N., Rahman, M. A., Bao, S., Liu, M., Wheeler, S. E., & Knoell, D. L. (2016).
Cadmium attenuates the macrophage response to LPS through inhibition of the NF-κB pathway.American Journal of Physiology - Lung Cellular and Molecular Physiology, 311(4), L754.
Read ReviewZhai QTian FZhao J, Zhang HNarbad A, Chen W2016.
Oral Administration of Probiotics Inhibits Absorption of the Heavy Metal Cadmium by Protecting the Intestinal Barrier.Appl Environ Microbiol82:.
Read ReviewMcCarty, M. F. (2012).
Zinc and multi-mineral supplementation should mitigate the pathogenic impact of cadmium exposure.Medical Hypotheses, 79(5), 642-648.
Read ReviewZhai, Q., Narbad, A., & Chen, W. (2014).
Dietary Strategies for the Treatment of Cadmium and Lead Toxicity.Nutrients, 7(1), 552.
Read ReviewKaur, U. J., Chopra, A., Preet, S., Raj, K., Kondepudi, K. K., Gupta, V., & Rishi, P. (2021).
Potential of 1-(1-napthylmethyl)-piperazine, an efflux pump inhibitor against cadmium-induced multidrug resistance in Salmonella enterica serovar Typhi as an adjunct to antibiotics.Brazilian Journal of Microbiology, 52(3), 1303.
Wang, J., Kuo, C., Kuo, F., Wang, Y., Hsu, W., Yu, F., Hu, H., Hsu, P., Wang, J., & Wu, D. (2019).
Fecal microbiota transplantation: Review and updateJournal of the Formosan Medical Association, 118, S23-S31.