Alternation of the gut microbiota in irritable bowel syndrome: an integrated analysis based on multicenter amplicon sequencing data Original paper
-
Irritable Bowel Syndrome (IBS)
Irritable Bowel Syndrome (IBS)
Irritable Bowel Syndrome (IBS) is a common gastrointestinal disorder characterized by symptoms such as abdominal pain, bloating, and altered bowel habits. Recent research has focused on the gut microbiota's role in IBS, aiming to identify specific microbial signatures associated with the condition.
-
Kimberly Eyer
Kimberly Eyer, a Registered Nurse with 30 years of nursing experience across diverse settings, including Home Health, ICU, Operating Room Nursing, and Research. Her roles have encompassed Operating Room Nurse, RN First Assistant, and Acting Director of a Same Day Surgery Center. Her specialty areas include Adult Cardiac Surgery, Congenital Cardiac Surgery, Vascular Surgery, and Neurosurgery.
Microbiome Signatures identifies and validates condition-specific microbiome shifts and interventions to accelerate clinical translation. Our multidisciplinary team supports clinicians, researchers, and innovators in turning microbiome science into actionable medicine.
Karen Pendergrass is a microbiome researcher specializing in microbiome-targeted interventions (MBTIs). She systematically analyzes scientific literature to identify microbial patterns, develop hypotheses, and validate interventions. As the founder of the Microbiome Signatures Database, she bridges microbiome research with clinical practice. In 2012, based on her own investigative research, she became the first documented case of FMT for Celiac Disease—four years before the first published case study.
What Was Studied?
This study focused on the alteration of the gut microbiota in patients with Irritable Bowel Syndrome (IBS) through an integrated analysis of multicenter amplicon sequencing data. Researchers aimed to elucidate specific microbial changes associated with IBS pathophysiology and its subtypes, including IBS-D (diarrhea-predominant), IBS-C (constipation-predominant), and mixed-type IBS (IBS-M). Utilizing 16S rRNA data from the GMrepo database, the study analyzed microbial diversity, composition, and co-occurrence networks to identify key taxa and potential microbial biomarkers linked to IBS symptomatology and gut dysbiosis.
Who Was Studied?
The study analyzed 708 individuals, with 354 diagnosed with IBS (subcategorized into IBS-D, IBS-C, and IBS-M) and 354 matched healthy controls. Data was retrieved from multicenter cohorts to ensure a diverse representation across age, sex, BMI, and geographical regions. The participants were selected using a propensity score matching (PSM) algorithm to reduce confounding variables and ensure balanced comparisons.
What Were the Most Important Findings?
The study revealed significant alterations in the gut microbiota composition of IBS patients compared to healthy controls. At the phylum level, IBS patients showed a marked reduction in Firmicutes, Euryarchaeota, Cyanobacteria, Acidobacteria, and Lentisphaerae, while Proteobacteria and Bacteroidetes were notably enriched. Interestingly, the Firmicutes/Proteobacteria ratio was significantly decreased in IBS patients, indicative of microbial imbalance. At the family level, the study found an enrichment of Enterobacteriaceae, Moraxellaceae, and Sphingobacteriaceae in IBS patients, while Ruminococcaceae and Bifidobacteriaceae were significantly reduced. Genus-level analysis highlighted increases in Streptococcus, Bacillus, Enterocloster, Sphingobacterium, Holdemania, and Acinetobacter among IBS cohorts. Conversely, Faecalibacterium, Bifidobacterium, and Ruminococcus were substantially depleted, suggesting a loss of anti-inflammatory and SCFA-producing microbiota. Network analysis identified Faecalibacterium prausnitzii, Bifidobacterium longum, and Bifidobacterium breve as key hub species with strong positive interactions, indicating their potential role in maintaining gut homeostasis. Subgroup analysis for IBS-D and IBS-C further revealed distinct microbial signatures, such as the enrichment of Streptococcus in both subtypes, while Faecalibacterium and Ruminococcus were consistently depleted. These findings suggest that microbial dysbiosis in IBS is subtype-specific, potentially influencing disease symptoms and progression through microbial interactions and metabolic shifts.
Parameter | Findings in IBS-D | Findings in IBS-C | Findings in IBS-M |
---|---|---|---|
Bacterial Diversity | Reduced diversity with enrichment of Proteobacteria and Bacteroidetes | Altered diversity with reductions in Firmicutes and Euryarchaeota | Mixed microbial shifts with increased Bacteroidetes and Proteobacteria |
Phylum-Level Changes | Decreased Firmicutes, Euryarchaeota, Cyanobacteria, Acidobacteria, Lentisphaerae; increased Proteobacteria and Bacteroidetes | Reduced Firmicutes and Euryarchaeota, with moderate increases in Proteobacteria | Increased Bacteroidetes and Proteobacteria, reduced Cyanobacteria |
Key Genera | Enrichment of Streptococcus, Bacillus, Enterocloster, Sphingobacterium, Holdemania, Acinetobacter | Enrichment of Streptococcus; depletion of Faecalibacterium and Ruminococcus | Mixed representation of Streptococcus and Bacillus |
Metabolic Pathways | Elevated pathways linked to hydrogen sulfide production and bile acid metabolism | Altered short-chain fatty acid (SCFA) production pathways | Mixed shifts in SCFA production and bile acid metabolism |
Inflammatory Associations | Linked to increased gut permeability and pro-inflammatory markers | Associated with constipation-related dysbiosis and inflammation | Mixed inflammatory markers reflecting both diarrhea and constipation |
Diagnostic Potential | Identification of Streptococcus and Enterobacteriaceae as microbial markers | Faecalibacterium and Ruminococcus as indicators of microbial imbalance | Mixed indicators with potential microbial biomarkers for symptom fluctuation |
What Are the Greatest Implications of This Study?
This study emphasizes the critical role of gut microbiota alterations in IBS pathogenesis, with distinct microbial imbalances linked to different IBS subtypes. The identification of specific IBS-exclusive genera like Enterobacteriaceae and the depletion of protective species such as Faecalibacterium prausnitzii highlights potential targets for microbiome-based interventions. The findings suggest that personalized therapeutic strategies could be developed based on microbial profiling, potentially leveraging probiotics, dietary modifications, or fecal microbiota transplantation (FMT) to restore microbial balance and alleviate symptoms. The study also underscores the importance of further research into microbial biomarkers for IBS diagnosis and treatment stratification, particularly in distinguishing between IBS-D and IBS-C through targeted microbiome modulation.
Irritable Bowel Syndrome (IBS) is a common gastrointestinal disorder characterized by symptoms such as abdominal pain, bloating, and altered bowel habits. Recent research has focused on the gut microbiota's role in IBS, aiming to identify specific microbial signatures associated with the condition.