Gut microbiota composition and functional prediction in diarrhea-predominant irritable bowel syndrome Original paper
-
Irritable Bowel Syndrome (IBS)
Irritable Bowel Syndrome (IBS)
Irritable Bowel Syndrome (IBS) is a common gastrointestinal disorder characterized by symptoms such as abdominal pain, bloating, and altered bowel habits. Recent research has focused on the gut microbiota's role in IBS, aiming to identify specific microbial signatures associated with the condition.
Microbiome Signatures identifies and validates condition-specific microbiome shifts and interventions to accelerate clinical translation. Our multidisciplinary team supports clinicians, researchers, and innovators in turning microbiome science into actionable medicine.
Karen Pendergrass is a microbiome researcher specializing in microbiome-targeted interventions (MBTIs). She systematically analyzes scientific literature to identify microbial patterns, develop hypotheses, and validate interventions. As the founder of the Microbiome Signatures Database, she bridges microbiome research with clinical practice. In 2012, based on her own investigative research, she became the first documented case of FMT for Celiac Disease—four years before the first published case study.
What was studied?
This study investigated the gut microbiota composition and functional prediction in patients with diarrhea-predominant irritable bowel syndrome (IBS-D) compared to healthy controls in Nanchang, China. It aimed to identify differences in microbial diversity, composition, and functional metabolic pathways using 16S rRNA sequencing and PICRUSt analysis. The study included 30 IBS-D patients and 30 healthy controls and examined the relative abundance of various microbial taxa, alpha and beta diversity measures, and predicted functional capabilities of the microbiome.
Who was studied?
The study focused on 30 patients diagnosed with diarrhea-predominant IBS (IBS-D) based on Rome IV criteria, alongside 30 healthy controls. Participants ranged in age from 20 to 64 years and were recruited from Nanchang, China. All participants were screened to exclude conditions like inflammatory bowel disease, peptic ulcer, and recent antibiotic or probiotic use to avoid confounding factors.
What were the most important findings?
The study found that gut microbiota richness, but not diversity, was decreased in IBS-D patients compared to healthy controls. At the phylum level, there was a significant decrease in Firmicutes, Fusobacteria, and Actinobacteria, alongside an increase in Proteobacteria in IBS-D patients. At the genus level, Enterobacteriaceae significantly increased, while Alloprevotella and Fusobacterium significantly decreased. Functional predictions using PICRUSt analysis showed up-regulation in pathways associated with cofactor and vitamin metabolism, xenobiotics biodegradation, and metabolism, while environmental adaptation, cell growth, and death pathways were down-regulated. These shifts suggest that microbial imbalances in IBS-D patients may contribute to inflammation, altered metabolism, and disrupted gut barrier function. Additionally, Proteobacteria, identified as a potential microbial signature of disease, was notably elevated, indicating a possible role in driving inflammation in the gut of IBS-D patients.
Parameter | IBS-D Patients |
---|
Alpha Diversity | Decreased richness; no change in diversity |
Phylum-Level Changes | ↓ Firmicutes, Fusobacteria, Actinobacteria; ↑ Proteobacteria |
Genus-Level Changes | ↑ Enterobacteriaceae; ↓ Alloprevotella, Fusobacterium |
Functional Pathways (PICRUSt) | ↑ Metabolism of cofactors, vitamins, and xenobiotics; ↓ Environmental adaptation, cell growth, and death |
Microbial Signature | Elevated Proteobacteria linked to inflammation |
Inflammatory Markers | Associated with increased Proteobacteria |
Therapeutic Implications | Potential for microbiome-targeted therapy and dietary interventions |
What are the greatest implications of this study?
The findings underscore the significant role of microbiome alterations in the pathogenesis of IBS-D, highlighting Proteobacteria as a potential microbial marker of disease activity. The functional predictions suggest that dysbiosis in IBS-D is not limited to microbial composition but extends to metabolic and detoxification pathways, which may exacerbate symptoms and chronic inflammation. These insights open avenues for microbiome-targeted therapies, such as probiotics, prebiotics, and dietary modifications, aimed at restoring microbial balance and improving patient outcomes. Furthermore, the study emphasizes the need for region-specific microbiome analyses due to geographical variations in gut flora.
Irritable Bowel Syndrome (IBS) is a common gastrointestinal disorder characterized by symptoms such as abdominal pain, bloating, and altered bowel habits. Recent research has focused on the gut microbiota's role in IBS, aiming to identify specific microbial signatures associated with the condition.