Lactoferrin as a Natural Immune Modulator Original paper
-
Lactoferrin
Lactoferrin
OverviewLactoferrin is a multifunctional glycoprotein of significant interest due to its broad spectrum of biological activities. To date, 20 various physiological roles of lactoferrin have been confirmed [x]. The following summary highlights its sources and biological properties:SourcesHuman and Animal Sources: Lactoferrin is naturally present in colostrum, nasal, intestinal, and genital secretions, as well as in […]
-
Divine Aleru
I am a biochemist with a deep curiosity for the human microbiome and how it shapes human health, and I enjoy making microbiome science more accessible through research and writing. With 2 years experience in microbiome research, I have curated microbiome studies, analyzed microbial signatures, and now focus on interventions as a Microbiome Signatures and Interventions Research Coordinator.
Microbiome Signatures identifies and validates condition-specific microbiome shifts and interventions to accelerate clinical translation. Our multidisciplinary team supports clinicians, researchers, and innovators in turning microbiome science into actionable medicine.
I am a biochemist with a deep curiosity for the human microbiome and how it shapes human health, and I enjoy making microbiome science more accessible through research and writing. With 2 years experience in microbiome research, I have curated microbiome studies, analyzed microbial signatures, and now focus on interventions as a Microbiome Signatures and Interventions Research Coordinator.
What was reviewed?
This review comprehensively examined lactoferrin, a multifunctional iron-binding glycoprotein, highlighting its capacity as a natural immunomodulator that bridges innate and adaptive immunity. The paper assessed lactoferrin’s roles in infection, inflammation, oxidative stress, and immune system regulation, including its therapeutic potential in systemic inflammatory response syndrome (SIRS), sepsis, and bacterial infections, including methicillin-resistant Staphylococcus aureus (MRSA).
Who was reviewed?
The review synthesized findings from preclinical in vivo and in vitro studies, particularly in murine models, along with limited human data, to explore the immune mechanisms regulated by lactoferrin. It included evidence across diverse immune cell types, including macrophages, neutrophils, dendritic cells, and T and B lymphocytes.
What were the most important findings?
Lactoferrin significantly modulates immune function through both direct and indirect pathways. It acts as an antimicrobial by binding iron, limiting pathogen proliferation, and neutralizing lipopolysaccharides (LPS). In the microbiome context, this review emphasizes that lactoferrin plays a regulatory role by reducing oxidative stress through iron sequestration and decreasing reactive oxygen species (ROS), which often rise during inflammatory and infectious states.
Lactoferrin dampens excessive immune responses during sepsis and endotoxemia by suppressing mitochondrial ROS and pro-inflammatory cytokines such as IL-6 and TNF-α. It also protects mucosal integrity by reducing bacterial translocation, especially in gut-associated lymphoid tissue. Notably, in both Gram-negative (E. coli) and Gram-positive (MRSA) infection models, lactoferrin improved survival and reduced inflammatory biomarkers. Regarding adaptive immunity, lactoferrin promotes Th1 responses, enhances antigen presentation via dendritic cells and macrophages, and drives T-cell maturation and B-cell isotype switching—thereby reinforcing host microbial surveillance and immunological memory.
Microbiome relevance lies in lactoferrin’s ability to preserve mucosal immunity, reduce gut inflammation, and prevent dysbiosis-linked bacterial dissemination, especially under systemic infectious stress. These actions suggest lactoferrin supports a microbiome-resilient host immune state.
What are the implications of this review?
This review highlights lactoferrin’s potential as a natural immunomodulatory intervention. Its ability to simultaneously enhance protective immunity while dampening harmful inflammation makes it a promising candidate for clinical use in sepsis, autoimmune diseases, infections, and potentially microbiome-targeted therapies. Its role in bridging innate and adaptive immunity also supports its use as a vaccine adjuvant, especially for pathogens requiring strong Th1-type responses. For microbiome-focused clinicians, lactoferrin’s action on mucosal immunity and bacterial translocation pathways suggests a powerful tool for managing dysbiosis-linked systemic inflammation.