Research Feeds

View All
1H NMR- based metabolomics approaches as non-invasive tools for diagnosis of endometriosis A Comparative Study of Blood Levels of Manganese, Some Macroelements and Heavy Metals in Obese and Non-Obese Polycystic Ovary Syndrome Patients A Comparative Study of the Gut Microbiota Associated With Immunoglobulin a Nephropathy and Membranous Nephropathy A comparative study of the gut microbiota in immune-mediated inflammatory diseases-does a common dysbiosis exist? A comprehensive analysis of breast cancer microbiota and host gene expression A comprehensive analysis of breast cancer microbiota and host gene expression A cross-sectional analysis about bacterial vaginosis, high-risk human papillomavirus infection, and cervical intraepithelial neoplasia in Chinese women A cross-sectional pilot study of birth mode and vaginal microbiota in reproductive-age women A metabonomics approach as a means for identification of potentialbiomarkers for early diagnosis of endometriosis A More Diverse Cervical Microbiome Associates with Better Clinical Outcomes in Patients with Endometriosis: A Pilot Study A Multi-Omic Systems-Based Approach Reveals Metabolic Markers of Bacterial Vaginosis and Insight into the Disease A New Approach to Polycystic Ovary Syndrome: The Gut Microbiota A Review of the Anti-inflammatory Properties of Clindamycin in the Treatment of Acne Vulgaris A Systematic Review and Meta-Analysis of Premenstrual Syndrome with Special Emphasis on Herbal Medicine and Nutritional Supplements. Adherence to the Mediterranean Diet, Dietary Patterns and Body Composition in Women with Polycystic Ovary Syndrome (PCOS)

Exploring the link between dietary zinc intake and endometriosis risk: insights from a cross-sectional analysis of American women Original paper

Researched by:

  • Karen Pendergrass ID
    Karen Pendergrass

    User avatarKaren Pendergrass is a microbiome researcher specializing in microbiome-targeted interventions (MBTIs). She systematically analyzes scientific literature to identify microbial patterns, develop hypotheses, and validate interventions. As the founder of the Microbiome Signatures Database, she bridges microbiome research with clinical practice. In 2012, based on her own investigative research, she became the first documented case of FMT for Celiac Disease—four years before the first published case study.

March 18, 2025

  • Women’s Health
    Women’s Health

    Women’s health, a vital aspect of medical science, encompasses various conditions unique to women’s physiological makeup. Historically, women were often excluded from clinical research, leading to a gap in understanding the intricacies of women’s health needs. However, recent advancements have highlighted the significant role that the microbiome plays in these conditions, offering new insights and potential therapies. MicrobiomeSignatures.com is at the forefront of exploring the microbiome signature of each of these conditions to unravel the etiology of these diseases and develop targeted microbiome therapies.

  • Endometriosis
    Endometriosis

    Endometriosis involves ectopic endometrial tissue causing pain and infertility. Validated and Promising Interventions include Hyperbaric Oxygen Therapy (HBOT), Low Nickel Diet, and Metronidazole therapy.

  • STOPs
    STOPs

    A STOP (Suggested Termination Of Practices) is a recommendation that advocates for the discontinuation of certain medical interventions, treatments, or practices based on emerging evidence indicating that these may be ineffective, harmful, or counterproductive in the management of specific conditions.

Researched by:

  • Karen Pendergrass ID
    Karen Pendergrass

    User avatarKaren Pendergrass is a microbiome researcher specializing in microbiome-targeted interventions (MBTIs). She systematically analyzes scientific literature to identify microbial patterns, develop hypotheses, and validate interventions. As the founder of the Microbiome Signatures Database, she bridges microbiome research with clinical practice. In 2012, based on her own investigative research, she became the first documented case of FMT for Celiac Disease—four years before the first published case study.

Last Updated: 2025

Microbiome Signatures identifies and validates condition-specific microbiome shifts and interventions to accelerate clinical translation. Our multidisciplinary team supports clinicians, researchers, and innovators in turning microbiome science into actionable medicine.

Karen Pendergrass

Karen Pendergrass is a microbiome researcher specializing in microbiome-targeted interventions (MBTIs). She systematically analyzes scientific literature to identify microbial patterns, develop hypotheses, and validate interventions. As the founder of the Microbiome Signatures Database, she bridges microbiome research with clinical practice. In 2012, based on her own investigative research, she became the first documented case of FMT for Celiac Disease—four years before the first published case study.

What was studied?

This study investigated the association between dietary zinc intake and the risk of endometriosis among American women. Using cross-sectional data from the National Health and Nutrition Examination Survey (NHANES) collected between 1999 and 2006, the researchers aimed to evaluate whether zinc intake, as a key nutritional factor, was linked to the prevalence of endometriosis. Zinc is known for its essential roles in immune modulation, antioxidative defense, and regulation of matrix metalloproteinases (MMPs), all of which are implicated in endometriosis progression.

Who was studied?

The study included 4,315 American women aged 20–54 years, of whom 331 were diagnosed with endometriosis based on self-reported doctor diagnoses. Participants’ dietary zinc intake was assessed using 24-hour dietary recall interviews, with additional data on demographics, lifestyle, and health covariates collected. Women with extreme caloric intakes or incomplete data were excluded to ensure robustness of results.

What were the most important findings?

The study revealed a positive correlation between higher dietary zinc intake and the risk of endometriosis. Women consuming over 14 mg/day of zinc had a significantly higher adjusted odds ratio (1.60, 95% CI: 1.12–2.27, p = 0.009) compared to those with intake ≤8 mg/day. Zinc’s dual role in immune modulation and antioxidative defense was emphasized, particularly its regulation of matrix metalloproteinases (MMPs) like MMP-2 and MMP-9, which are key enzymes in tissue remodeling and endometriotic lesion invasion. Interestingly, despite zinc’s known antioxidative and anti-inflammatory roles, excessive intake appeared to have a counterproductive effect. These nuanced findings highlight zinc’s complex role in endometriosis pathophysiology.

What are the greatest implications of this study?

This research underscores the potential for dietary zinc as both a marker and modifiable factor in endometriosis risk. It raises questions about zinc’s dualistic effects, where optimal levels may support immune health, but excess intake could exacerbate estrogen-related pathways in endometriosis. Clinicians should be cautious when recommending zinc supplementation for reproductive health, particularly in populations at risk for endometriosis. Furthermore, this study strengthens the biological plausibility of microbiome involvement in endometriosis, as zinc is a crucial cofactor for microbial activity, and its imbalance may alter the gut and pelvic microbiota implicated in the disease.

Zinc

Zinc is an essential trace element vital for cellular functions and microbiome health. It influences immune regulation, pathogen virulence, and disease progression in conditions like IBS and breast cancer. Pathogens exploit zinc for survival, while therapeutic zinc chelation can suppress virulence, rebalance the microbiome, and offer potential treatments for inflammatory and degenerative diseases.

Endometriosis

Endometriosis involves ectopic endometrial tissue causing pain and infertility. Validated and Promising Interventions include Hyperbaric Oxygen Therapy (HBOT), Low Nickel Diet, and Metronidazole therapy.

Matrix Metalloproteinases (MMPs)

Matrix Metalloproteinases (MMPs) are zinc-dependent enzymes that regulate extracellular matrix remodeling, with critical roles in health, disease, and interactions with the microbiome.

Matrix Metalloproteinases (MMPs)

Matrix Metalloproteinases (MMPs) are zinc-dependent enzymes that regulate extracellular matrix remodeling, with critical roles in health, disease, and interactions with the microbiome.

Join the Roundtable

Contribute to published consensus reports, connect with top clinicians and researchers, and receive exclusive invitations to roundtable conferences.